These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32554496)

  • 1. Mechanical adaptation of monocytes in model lung capillary networks.
    Dupire J; Puech PH; Helfer E; Viallat A
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14798-14804. PubMed ID: 32554496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipolysaccharide-induced monocyte retention in the lung. Role of monocyte stiffness, actin assembly, and CD18-dependent adherence.
    Doherty DE; Downey GP; Schwab B; Elson E; Worthen GS
    J Immunol; 1994 Jul; 153(1):241-55. PubMed ID: 7911494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation model for flow of neutrophils in pulmonary capillary network.
    Shirai A; Fujita R; Hayase T
    Technol Health Care; 2005; 13(4):301-11. PubMed ID: 16055978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing cell mechanics in hematologic diseases with microfluidic biophysical flow cytometry.
    Rosenbluth MJ; Lam WA; Fletcher DA
    Lab Chip; 2008 Jul; 8(7):1062-70. PubMed ID: 18584080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The physical origins of transit time measurements for rapid, single cell mechanotyping.
    Nyberg KD; Scott MB; Bruce SL; Gopinath AB; Bikos D; Mason TG; Kim JW; Choi HS; Rowat AC
    Lab Chip; 2016 Aug; 16(17):3330-9. PubMed ID: 27435631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nature of leukocyte shape changes in the pulmonary capillaries.
    Redenbach DM; English D; Hogg JC
    Am J Physiol; 1997 Oct; 273(4):L733-40. PubMed ID: 9357847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actomyosin Cortical Mechanical Properties in Nonadherent Cells Determined by Atomic Force Microscopy.
    Cartagena-Rivera AX; Logue JS; Waterman CM; Chadwick RS
    Biophys J; 2016 Jun; 110(11):2528-2539. PubMed ID: 27276270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of flow for viscoelastic neutrophil models in a rectangular capillary network: effects of capillary shape and cell stiffness on transit time.
    Shirai A; Fujita R; Hayase T
    Technol Health Care; 2007; 15(2):131-46. PubMed ID: 17361057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling neutrophil transport in pulmonary capillaries.
    Shirai A
    Respir Physiol Neurobiol; 2008 Nov; 163(1-3):158-65. PubMed ID: 18638575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing deformability and surface friction of cancer cells.
    Byun S; Son S; Amodei D; Cermak N; Shaw J; Kang JH; Hecht VC; Winslow MM; Jacks T; Mallick P; Manalis SR
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7580-5. PubMed ID: 23610435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythrocyte and polymorphonuclear cell transit time and concentration in human pulmonary capillaries.
    Hogg JC; Coxson HO; Brumwell ML; Beyers N; Doerschuk CM; MacNee W; Wiggs BR
    J Appl Physiol (1985); 1994 Oct; 77(4):1795-800. PubMed ID: 7836202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutrophil transit times through pulmonary capillaries: the effects of capillary geometry and fMLP-stimulation.
    Bathe M; Shirai A; Doerschuk CM; Kamm RD
    Biophys J; 2002 Oct; 83(4):1917-33. PubMed ID: 12324412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Red blood cell mechanics and capillary blood rheology.
    Secomb TW
    Cell Biophys; 1991 Jun; 18(3):231-51. PubMed ID: 1726534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation of neutrophil transit through the pulmonary capillary bed.
    Hanger CC; Wagner WW; Janke SJ; Lloyd TC; Capen RL
    J Appl Physiol (1985); 1993 Apr; 74(4):1647-52. PubMed ID: 8514678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of pulmonary capillary red blood cell transit times.
    Presson RG; Graham JA; Hanger CC; Godbey PS; Gebb SA; Sidner RA; Glenny RW; Wagner WW
    J Appl Physiol (1985); 1995 Aug; 79(2):382-8. PubMed ID: 7592192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red blood cell motion and hematocrit distribution in a deforming capillary.
    Friend M; Lee JS
    J Biomech Eng; 1990 Nov; 112(4):451-6. PubMed ID: 2273873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Propagation of autowaves in capillaries thick with moving viscous excitable medium].
    Davydov VA; Davydov NV
    Biofizika; 2015; 60(2):337-42. PubMed ID: 26016030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A membrane-based microfluidic device for mechano-chemical cell manipulation.
    Ravetto A; Hoefer IE; den Toonder JM; Bouten CV
    Biomed Microdevices; 2016 Apr; 18(2):31. PubMed ID: 26941177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of anatomic variability on blood flow and pressure gradients in the pulmonary capillaries.
    Dhadwal A; Wiggs B; Doerschuk CM; Kamm RD
    J Appl Physiol (1985); 1997 Nov; 83(5):1711-20. PubMed ID: 9375343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.