BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32554875)

  • 1. Variation of the frictional anisotropy on ventral scales of snakes caused by nanoscale steps.
    Wu W; Yu S; Schreiber P; Dollmann A; Lutz C; Gomard G; Greiner C; Hölscher H
    Bioinspir Biomim; 2020 Aug; 15(5):056014. PubMed ID: 32554875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling of the frictional behaviour of the snake skin covered by anisotropic surface nanostructures.
    Filippov AE; Gorb SN
    Sci Rep; 2016 Mar; 6():23539. PubMed ID: 27005001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface structure and frictional properties of the skin of the Amazon tree boa Corallus hortulanus (Squamata, Boidae).
    Berthé RA; Westhoff G; Bleckmann H; Gorb SN
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Mar; 195(3):311-8. PubMed ID: 19137315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional consequences of convergently evolved microscopic skin features on snake locomotion.
    Rieser JM; Li TD; Tingle JL; Goldman DI; Mendelson JR
    Proc Natl Acad Sci U S A; 2021 Feb; 118(6):. PubMed ID: 33547241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor benefits of being a slender and slick sand swimmer.
    Sharpe SS; Koehler SA; Kuckuk RM; Serrano M; Vela PA; Mendelson J; Goldman DI
    J Exp Biol; 2015 Feb; 218(Pt 3):440-50. PubMed ID: 25524983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On surface structure and friction regulation in reptilian limbless locomotion.
    Abdel-Aal HA
    J Mech Behav Biomed Mater; 2013 Jun; 22():115-35. PubMed ID: 23582565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Friction enhancement in concertina locomotion of snakes.
    Marvi H; Hu DL
    J R Soc Interface; 2012 Nov; 9(76):3067-80. PubMed ID: 22728386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology and frictional properties of scales of Pseudopus apodus (Anguidae, Reptilia).
    Spinner M; Bleckmann H; Westhoff G
    Zoology (Jena); 2015 Jun; 118(3):171-5. PubMed ID: 25843915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Snakes mimic earthworms: propulsion using rectilinear travelling waves.
    Marvi H; Bridges J; Hu DL
    J R Soc Interface; 2013 Jul; 10(84):20130188. PubMed ID: 23635494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale design of snake skin for reptation locomotions via friction anisotropy.
    Hazel J; Stone M; Grace MS; Tsukruk VV
    J Biomech; 1999 May; 32(5):477-84. PubMed ID: 10327001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-inspired low frictional surfaces having micro-dimple arrays prepared with honeycomb patterned porous films as wet etching masks.
    Saito Y; Yabu H
    Langmuir; 2015 Jan; 31(3):959-63. PubMed ID: 25547931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of human hair by friction force microscopy with the hair-model-probe.
    Sadaie M; Nishikawa N; Ohnishi S; Tamada K; Yase K; Hara M
    Colloids Surf B Biointerfaces; 2006 Aug; 51(2):120-9. PubMed ID: 16872812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral Oscillation and Body Compliance Help Snakes and Snake Robots Stably Traverse Large, Smooth Obstacles.
    Fu Q; Gart SW; Mitchel TW; Kim JS; Chirikjian GS; Li C
    Integr Comp Biol; 2020 Jul; 60(1):171-179. PubMed ID: 32215569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frictional-anisotropy-based systems in biology: structural diversity and numerical model.
    Filippov A; Gorb SN
    Sci Rep; 2013; 3():1240. PubMed ID: 23393622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructure and wear patterns of the ventral epidermis of four snake species (Squamata, Serpentes).
    Klein MC; Gorb SN
    Zoology (Jena); 2014 Oct; 117(5):295-314. PubMed ID: 25169958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Snakes partition their body to traverse large steps stably.
    Gart SW; Mitchel TW; Li C
    J Exp Biol; 2019 Apr; 222(Pt 8):. PubMed ID: 30936272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanics and optimization of undulatory locomotion in different environments, tuning geometry, stiffness, damping and frictional anisotropy.
    Yaqoob B; Rodella A; Del Dottore E; Mondini A; Mazzolai B; Pugno NM
    J R Soc Interface; 2023 Feb; 20(199):20220875. PubMed ID: 36751930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dry friction of microstructured polymer surfaces inspired by snake skin.
    Baum MJ; Heepe L; Fadeeva E; Gorb SN
    Beilstein J Nanotechnol; 2014; 5():1091-103. PubMed ID: 25161844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Friction behavior of a microstructured polymer surface inspired by snake skin.
    Baum MJ; Heepe L; Gorb SN
    Beilstein J Nanotechnol; 2014; 5():83-97. PubMed ID: 24611129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing snake locomotion on an inclined plane.
    Wang X; Osborne MT; Alben S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012717. PubMed ID: 24580267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.