These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32554883)

  • 1. Mapping nanoscale dynamic properties of suspended and supported multi-layer graphene membranes via contact resonance and ultrasonic scanning probe microscopies.
    Mucientes M; McNair R; Peasey A; Shao S; Wengraf J; Lulla K; Robinson BJ; Kolosov O
    Nanotechnology; 2020 Oct; 31(41):415702. PubMed ID: 32554883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manufacture and characterization of graphene membranes with suspended silicon proof masses for MEMS and NEMS applications.
    Fan X; Smith AD; Forsberg F; Wagner S; Schröder S; Akbari SSA; Fischer AC; Villanueva LG; Östling M; Lemme MC; Niklaus F
    Microsyst Nanoeng; 2020; 6():17. PubMed ID: 34567632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualising the strain distribution in suspended two-dimensional materials under local deformation.
    Elibol K; Bayer BC; Hummel S; Kotakoski J; Argentero G; Meyer JC
    Sci Rep; 2016 Jun; 6():28485. PubMed ID: 27346485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subsurface imaging of two-dimensional materials at the nanoscale.
    Dinelli F; Pingue P; Kay ND; Kolosov OV
    Nanotechnology; 2017 Feb; 28(8):085706. PubMed ID: 28117307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale mapping of contact stiffness and damping by contact resonance atomic force microscopy.
    Stan G; King SW; Cook RF
    Nanotechnology; 2012 Jun; 23(21):215703. PubMed ID: 22551825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the elastic properties of granular Au films by contact resonance atomic force microscopy.
    Stan G; Cook RF
    Nanotechnology; 2008 Jun; 19(23):235701. PubMed ID: 21825800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of contact-resonance AFM methods to polymer samples.
    Friedrich S; Cappella B
    Beilstein J Nanotechnol; 2020; 11():1714-1727. PubMed ID: 33224702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale interfacial interactions of graphene with polar and nonpolar liquids.
    Robinson BJ; Kay ND; Kolosov OV
    Langmuir; 2013 Jun; 29(25):7735-42. PubMed ID: 23713755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy.
    Abooalizadeh Z; Sudak LJ; Egberts P
    Beilstein J Nanotechnol; 2019; 10():1332-1347. PubMed ID: 31355102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal microscopy using 'half and half' contact mode and ultrasonic force microscopy.
    Skilbeck MS; Marsden AJ; Cao G; Kinloch IA; Young RJ; Edwards RS; Wilson NR
    Nanotechnology; 2014 Aug; 25(33):335708. PubMed ID: 25074837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic techniques bridging between nanoscale and microscale with an atomically sharpened tip - field ion microscopy/scanning probe microscopy/ scanning electron microscopy.
    Tomitori M; Sasahara A
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i11-i12. PubMed ID: 25359799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate and Precise Determination of Mechanical Properties of Silicon Nitride Beam Nanoelectromechanical Devices.
    Kim H; Shin DH; McAllister K; Seo M; Lee S; Kang IS; Park BH; Campbell EE; Lee SW
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7282-7287. PubMed ID: 28156098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization.
    Wagner S; Dieing T; Centeno A; Zurutuza A; Smith AD; Östling M; Kataria S; Lemme MC
    Nano Lett; 2017 Mar; 17(3):1504-1511. PubMed ID: 28140595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressing Nanoscale Wear by Graphene/Graphene Interfacial Contact Architecture: A Molecular Dynamics Study.
    Xu Q; Li X; Zhang J; Hu Y; Wang H; Ma T
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40959-40968. PubMed ID: 29083163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving the Subsurface Structure and Elastic Modulus of Layered Films via Contact Resonance Atomic Force Microscopy.
    Stan G; Ciobanu CV; King SW
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55238-55248. PubMed ID: 36455132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning Probe Spectroscopy of WS
    Dinelli F; Fabbri F; Forti S; Coletti C; Kolosov OV; Pingue P
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33322575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface Electrical Properties of Al
    Fisichella G; Schilirò E; Di Franco S; Fiorenza P; Lo Nigro R; Roccaforte F; Ravesi S; Giannazzo F
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7761-7771. PubMed ID: 28135063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New imaging modes for analyzing suspended ultra-thin membranes by double-tip scanning probe microscopy.
    Elibol K; Hummel S; Bayer BC; Meyer JC
    Sci Rep; 2020 Mar; 10(1):4839. PubMed ID: 32179773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of friction reduction of nanoscale sliding contacts achieved through ultrasonic excitation.
    Jiryaei Sharahi H; Egberts P; Kim S
    Nanotechnology; 2019 Feb; 30(7):075502. PubMed ID: 30523838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical and Electrical Anisotropy of Few-Layer Black Phosphorus.
    Tao J; Shen W; Wu S; Liu L; Feng Z; Wang C; Hu C; Yao P; Zhang H; Pang W; Duan X; Liu J; Zhou C; Zhang D
    ACS Nano; 2015 Nov; 9(11):11362-70. PubMed ID: 26422521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.