These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32554887)

  • 1. Cu@Ni core-shell nanoparticles prepared via an injection approach with enhanced oxidation resistance for the fabrication of conductive films.
    Fang Y; Zeng X; Chen Y; Ji M; Zheng H; Xu W; Peng DL
    Nanotechnology; 2020 Aug; 31(35):355601. PubMed ID: 32554887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Oxidation-Resistant Cu@Ni Core-Shell Nanoparticles for Printed Flexible Electrodes.
    Kim TG; Park HJ; Woo K; Jeong S; Choi Y; Lee SY
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1059-1066. PubMed ID: 29226669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced oxidation-resistant Cu-Ni core-shell nanowires: controllable one-pot synthesis and solution processing to transparent flexible heaters.
    Chen J; Chen J; Li Y; Zhou W; Feng X; Huang Q; Zheng JG; Liu R; Ma Y; Huang W
    Nanoscale; 2015 Oct; 7(40):16874-9. PubMed ID: 26411899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silver Shell Thickness-Dependent Conductivity of Coatings Based on Ni@Ag Core@shell Nanoparticles.
    Pajor-Świerzy A; Kozak K; Duraczyńska D; Wiertel-Pochopień A; Zawała J; Szczepanowicz K
    Nanotechnol Sci Appl; 2023; 16():73-84. PubMed ID: 38161487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polydispersity vs. Monodispersity. How the Properties of Ni-Ag Core-Shell Nanoparticles Affect the Conductivity of Ink Coatings.
    Pajor-Świerzy A; Staśko D; Pawłowski R; Mordarski G; Kamyshny A; Szczepanowicz K
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33946794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu-Ag core-shell nanoparticles with enhanced oxidation stability for printed electronics.
    Lee C; Kim NR; Koo J; Lee YJ; Lee HM
    Nanotechnology; 2015 Nov; 26(45):455601. PubMed ID: 26489391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Cu-Ni (core-shell) nanoparticles in a one-pot reaction under microwave irradiation.
    Yamauchi T; Tsukahara Y; Sakata T; Mori H; Yanagida T; Kawai T; Wada Y
    Nanoscale; 2010 Apr; 2(4):515-23. PubMed ID: 20644753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of metallic inks based on nickel-silver core-shell nanoparticles for fabrication of conductive films.
    Pajor-Świerzy A; Socha R; Pawłowski R; Warszyński P; Szczepanowicz K
    Nanotechnology; 2019 May; 30(22):225301. PubMed ID: 30721883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Oxalic Acid Treatment on Conductive Coatings Formed by Ni@Ag Core-Shell Nanoparticles.
    Pajor-Świerzy A; Pawłowski R; Sobik P; Kamyshny A; Szczepanowicz K
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable synthesis of Cu-Ni core-shell nanoparticles and nanowires with tunable magnetic properties.
    Guo H; Jin J; Chen Y; Liu X; Zeng D; Wang L; Peng DL
    Chem Commun (Camb); 2016 May; 52(42):6918-21. PubMed ID: 27147395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallic core-shell nanoparticles for conductive coatings and printing.
    Pajor-Świerzy A; Szczepanowicz K; Kamyshny A; Magdassi S
    Adv Colloid Interface Sci; 2022 Jan; 299():102578. PubMed ID: 34864597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Shell Cu@Co@Ni Nanoparticles Stabilized with a Metal-Organic Framework for Enhanced Tandem Catalysis.
    Sun JL; Chen YZ; Ge BD; Li JH; Wang GM
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):940-947. PubMed ID: 30556388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of fully covered Cu-Ag core-shell nanoparticles by compound method and anti-oxidation performance.
    Huang Y; Wu F; Zhou Z; Zhou L; Liu H
    Nanotechnology; 2020 Apr; 31(17):175601. PubMed ID: 31910401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Core@Shell Cu-Ni@Pt-Cu Nano-Octahedra and Their Improved MOR Activity.
    Li C; Chen X; Zhang L; Yan S; Sharma A; Zhao B; Kumbhar A; Zhou G; Fang J
    Angew Chem Int Ed Engl; 2021 Mar; 60(14):7675-7680. PubMed ID: 33438300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled growth of Cu-Ni nanowires and nanospheres for enhanced microwave absorption properties.
    Wang X; Dong L; Zhang B; Yu M; Liu J
    Nanotechnology; 2016 Mar; 27(12):125602. PubMed ID: 26890585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term dispersion stability and adhesion promotion of aqueous Cu nano-ink for flexible printed electronics.
    Seo YH; Jeong S; Jo Y; Choi Y; Ryu BH; Han G; Lee M
    J Nanosci Nanotechnol; 2013 Aug; 13(8):5661-4. PubMed ID: 23882813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermally stable core-shell Ni/nanorod-CeO
    Zhu S; Lian X; Fan T; Chen Z; Dong Y; Weng W; Yi X; Fang W
    Nanoscale; 2018 Jul; 10(29):14031-14038. PubMed ID: 29995024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Conductive, Flexible, and Oxidation-Resistant Cu-Ni Electrodes Produced from Hybrid Inks at Low Temperatures.
    Tomotoshi D; Oogami R; Kawasaki H
    ACS Appl Mater Interfaces; 2021 May; 13(17):20906-20915. PubMed ID: 33891413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction.
    Zhang S; Hao Y; Su D; Doan-Nguyen VV; Wu Y; Li J; Sun S; Murray CB
    J Am Chem Soc; 2014 Nov; 136(45):15921-4. PubMed ID: 25350678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic properties of monodispersed Ni/NiO core-shell nanoparticles.
    Seto T; Akinaga H; Takano F; Koga K; Orii T; Hirasawa M
    J Phys Chem B; 2005 Jul; 109(28):13403-5. PubMed ID: 16852675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.