These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 32554903)
1. Selective antifungal and antibacterial activities of Ag-Cu and Cu-Ag core-shell nanostructures synthesized in-situ PVA. Sabira SF; Kasabe AM; Mane PC; Chaudhari RD; Adhyapak PV Nanotechnology; 2020 Nov; 31(48):485705. PubMed ID: 32554903 [TBL] [Abstract][Full Text] [Related]
2. Enhanced cell-wall damage mediated, antibacterial activity of core-shell ZnO@Ag heterojunction nanorods against Staphylococcus aureus and Pseudomonas aeruginosa. Ponnuvelu DV; Suriyaraj SP; Vijayaraghavan T; Selvakumar R; Pullithadathail B J Mater Sci Mater Med; 2015 Jul; 26(7):204. PubMed ID: 26152512 [TBL] [Abstract][Full Text] [Related]
3. One-pot preparation of nanoporous Ag-Cu@Ag core-shell alloy with enhanced oxidative stability and robust antibacterial activity. Liu X; Du J; Shao Y; Zhao SF; Yao KF Sci Rep; 2017 Aug; 7(1):10249. PubMed ID: 28860477 [TBL] [Abstract][Full Text] [Related]
4. Thickness-dependent humidity sensing by poly(vinyl alcohol) stabilized Au-Ag and Ag-Au core-shell bimetallic nanomorph resistors. Adhyapak P; Aiyer R; Dugasani SR; Kim HU; Song CK; Vinu A; Renugopalakrishnan V; Park SH; Kim T; Lee H; Amalnerkar D R Soc Open Sci; 2018 Jun; 5(6):171986. PubMed ID: 30110479 [TBL] [Abstract][Full Text] [Related]
5. A Simple Route to Synthesize Cu@Ag Core-Shell Bimetallic Nanoparticles and Their Surface-Enhanced Raman Scattering Properties. Jin X; Mao A; Ding M; Ding P; Zhang T; Gu X; Xiao W; Yuan J Appl Spectrosc; 2016 Oct; 70(10):1692-1699. PubMed ID: 30208721 [TBL] [Abstract][Full Text] [Related]
6. Synthesis, characterization, optical and antimicrobial studies of polyvinyl alcohol-silver nanocomposites. Mahmoud KH Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():434-40. PubMed ID: 25523046 [TBL] [Abstract][Full Text] [Related]
7. Continuous syntheses of Pd@Pt and Cu@Ag core-shell nanoparticles using microwave-assisted core particle formation coupled with galvanic metal displacement. Miyakawa M; Hiyoshi N; Nishioka M; Koda H; Sato K; Miyazawa A; Suzuki TM Nanoscale; 2014 Aug; 6(15):8720-5. PubMed ID: 24948122 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of Trimetallic (Ni-Cu)@Ag Core@Shell Nanoparticles without Stabilizing Materials for Antibacterial Applications. Ahmed AAA; Aldeen TS; Al-Aqil SA; Alaizeri ZM; Megahed S ACS Omega; 2022 Oct; 7(42):37340-37350. PubMed ID: 36312413 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities. Zhang Z; Wu Y; Wang Z; Zou X; Zhao Y; Sun L Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():462-9. PubMed ID: 27612736 [TBL] [Abstract][Full Text] [Related]
10. Novel copper (Cu) loaded core-shell silica nanoparticles with improved Cu bioavailability: synthesis, characterization and study of antibacterial properties. Maniprasad P; Santra S J Biomed Nanotechnol; 2012 Aug; 8(4):558-66. PubMed ID: 22852465 [TBL] [Abstract][Full Text] [Related]
11. Bactericidal effect of graphene oxide/Cu/Ag nanoderivatives against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. JankauskaitĿ V; VitkauskienĿ A; Lazauskas A; Baltrusaitis J; ProsyĿevas I; AndruleviĿius M Int J Pharm; 2016 Sep; 511(1):90-97. PubMed ID: 27370911 [TBL] [Abstract][Full Text] [Related]
12. Antimicrobial activity of the biogenically synthesized core-shell Cu@Pt nanoparticles. Dobrucka R; Dlugaszewska J Saudi Pharm J; 2018 Jul; 26(5):643-650. PubMed ID: 29991908 [TBL] [Abstract][Full Text] [Related]
13. Antiplanktonic, antibiofilm, antiswarming motility and antiquorum sensing activities of green synthesized Ag-TiO Alavi M; Karimi N Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S399-S413. PubMed ID: 30095025 [TBL] [Abstract][Full Text] [Related]
14. Ag@AgI, core@shell structure in agarose matrix as hybrid: synthesis, characterization, and antimicrobial activity. Ghosh S; Saraswathi A; Indi SS; Hoti SL; Vasan HN Langmuir; 2012 Jun; 28(22):8550-61. PubMed ID: 22582868 [TBL] [Abstract][Full Text] [Related]
15. Synergistic antibacterial activity of compact silver/magnetite core-shell nanoparticles core shell against Gram-negative foodborne pathogens. Sharaf EM; Hassan A; Al-Salmi FA; Albalwe FM; Albalawi HMR; Darwish DB; Fayad E Front Microbiol; 2022; 13():929491. PubMed ID: 36118244 [TBL] [Abstract][Full Text] [Related]
16. Effect of Ag Templates on the Formation of Au-Ag Hollow/Core-Shell Nanostructures. Tsai CH; Chen SY; Song JM; Haruta M; Kurata H Nanoscale Res Lett; 2015 Dec; 10(1):438. PubMed ID: 26563266 [TBL] [Abstract][Full Text] [Related]
17. Development of Multi-concentration Cu:Ag Bimetallic Nanoparticles as a Promising Bactericidal for Antibiotic-Resistant Bacteria as Evaluated with Molecular Docking Study. Mureed S; Naz S; Haider A; Raza A; Ul-Hamid A; Haider J; Ikram M; Ghaffar R; Irshad M; Ghaffar A; Saeed A Nanoscale Res Lett; 2021 May; 16(1):91. PubMed ID: 34021844 [TBL] [Abstract][Full Text] [Related]
18. Comparison of antibacterial activities of Ag@TiO2 and Ag@SiO2 core-shell nanoparticles. Dhanalekshmi KI; Meena KS Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():887-90. PubMed ID: 24709355 [TBL] [Abstract][Full Text] [Related]
19. Controllable synthesis Fe Zhang Z; Xing D; Zhao X; Han X Environ Sci Pollut Res Int; 2017 Aug; 24(23):19011-19020. PubMed ID: 28660503 [TBL] [Abstract][Full Text] [Related]
20. Silver/poly(vinyl alcohol) nanocomposite film prepared using water in oil microemulsion for antibacterial applications. Fatema UK; Rahman MM; Islam MR; Mollah MYA; Susan MABH J Colloid Interface Sci; 2018 Mar; 514():648-655. PubMed ID: 29310094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]