These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

566 related articles for article (PubMed ID: 32555130)

  • 1. Ensemble Deep Learning Model for Multicenter Classification of Thyroid Nodules on Ultrasound Images.
    Wei X; Gao M; Yu R; Liu Z; Gu Q; Liu X; Zheng Z; Zheng X; Zhu J; Zhang S
    Med Sci Monit; 2020 Jun; 26():e926096. PubMed ID: 32555130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AIBx, Artificial Intelligence Model to Risk Stratify Thyroid Nodules.
    Thomas J; Haertling T
    Thyroid; 2020 Jun; 30(6):878-884. PubMed ID: 32013775
    [No Abstract]   [Full Text] [Related]  

  • 3. A Comparative Analysis of Two Machine Learning-Based Diagnostic Patterns with Thyroid Imaging Reporting and Data System for Thyroid Nodules: Diagnostic Performance and Unnecessary Biopsy Rate.
    Zhao CK; Ren TT; Yin YF; Shi H; Wang HX; Zhou BY; Wang XR; Li X; Zhang YF; Liu C; Xu HX
    Thyroid; 2021 Mar; 31(3):470-481. PubMed ID: 32781915
    [No Abstract]   [Full Text] [Related]  

  • 4. The application value of modified thyroid imaging report and data system in diagnosing medullary thyroid carcinoma.
    Zhu J; Li X; Wei X; Yang X; Zhao J; Zhang S; Guo Z
    Cancer Med; 2019 Jul; 8(7):3389-3400. PubMed ID: 31070290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thyroid nodules risk stratification through deep learning based on ultrasound images.
    Bai Z; Chang L; Yu R; Li X; Wei X; Yu M; Liu Z; Gao J; Zhu J; Zhang Y; Wang S; Zhang Z
    Med Phys; 2020 Dec; 47(12):6355-6365. PubMed ID: 33089513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization and Risk Stratification of Thyroid Nodules in Ultrasound Images Through Deep Learning.
    Wang Z; Wang X; Wang T; Qiu J; Lu W
    Ultrasound Med Biol; 2024 Jun; 50(6):882-887. PubMed ID: 38494413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network.
    Wang L; Yang S; Yang S; Zhao C; Tian G; Gao Y; Chen Y; Lu Y
    World J Surg Oncol; 2019 Jan; 17(1):12. PubMed ID: 30621704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Preliminary Study of Quantitative Ultrasound for Cancer-Risk Assessment of Thyroid Nodules.
    Goundan PN; Mamou J; Rohrbach D; Smith J; Patel H; Wallace KD; Feleppa EJ; Lee SL
    Front Endocrinol (Lausanne); 2021; 12():627698. PubMed ID: 34093429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison between deep learning convolutional neural networks and radiologists in the differentiation of benign and malignant thyroid nodules on CT images.
    Zhao HB; Liu C; Ye J; Chang LF; Xu Q; Shi BW; Liu LL; Yin YL; Shi BB
    Endokrynol Pol; 2021; 72(3):217-225. PubMed ID: 33619712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Management of Thyroid Nodules Seen on US Images: Deep Learning May Match Performance of Radiologists.
    Buda M; Wildman-Tobriner B; Hoang JK; Thayer D; Tessler FN; Middleton WD; Mazurowski MA
    Radiology; 2019 Sep; 292(3):695-701. PubMed ID: 31287391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The anteroposterior diameter of nodules in the risk assessment of papillary thyroid microcarcinoma.
    Huang K; Gao N; Zhai Q; Bian D; Wang D; Wang X
    Medicine (Baltimore); 2018 Mar; 97(10):e9712. PubMed ID: 29517693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-stage network with prior knowledge guidance for medullary thyroid carcinoma recognition in ultrasound images.
    Pan L; Cai Y; Lin N; Yang L; Zheng S; Huang L
    Med Phys; 2022 Apr; 49(4):2413-2426. PubMed ID: 35103313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The role of color flow-Doppler ultrasonography in the diagnosis of nodular goiter].
    Casella C; Talarico C; La Pinta M; Nascimbeni R; Di Fabio F; Salerni B
    Ann Ital Chir; 2003; 74(5):495-9; discussion 499-500. PubMed ID: 15139703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning-based method for detecting and classifying the ultrasound images of suspicious thyroid nodules.
    Zhao Z; Yang C; Wang Q; Zhang H; Shi L; Zhang Z
    Med Phys; 2021 Dec; 48(12):7959-7970. PubMed ID: 34719057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multitask network for thyroid nodule diagnosis based on TI-RADS.
    Han X; Chang L; Song K; Cheng L; Li M; Wei X
    Med Phys; 2022 Aug; 49(8):5064-5080. PubMed ID: 35608232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Malignant Thyroid Nodules That Do Not Meet ACR TI-RADS Criteria for Fine-Needle Aspiration.
    Middleton WD; Teefey SA; Tessler FN; Hoang JK; Reading CC; Langer JE; Beland MD; Szabunio MM; Desser TS
    AJR Am J Roentgenol; 2021 Feb; 216(2):471-478. PubMed ID: 32603228
    [No Abstract]   [Full Text] [Related]  

  • 17. Diagnosis of thyroid cancer in children: value of gray-scale and power doppler US.
    Lyshchik A; Drozd V; Demidchik Y; Reiners C
    Radiology; 2005 May; 235(2):604-13. PubMed ID: 15770036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient deep convolutional neural network model for visual localization and automatic diagnosis of thyroid nodules on ultrasound images.
    Zhu J; Zhang S; Yu R; Liu Z; Gao H; Yue B; Liu X; Zheng X; Gao M; Wei X
    Quant Imaging Med Surg; 2021 Apr; 11(4):1368-1380. PubMed ID: 33816175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computer-aided diagnosing system in the evaluation of thyroid nodules-experience in a specialized thyroid center.
    Xia S; Yao J; Zhou W; Dong Y; Xu S; Zhou J; Zhan W
    World J Surg Oncol; 2019 Dec; 17(1):210. PubMed ID: 31810469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cascade marker removal algorithm for thyroid ultrasound images.
    Ying X; Zhang Y; Yu M; Wei X; Zhu J; Gao J; Liu Z; Shen H; Zhang R; Li X; Yu R
    Med Biol Eng Comput; 2020 Nov; 58(11):2641-2656. PubMed ID: 32840765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.