BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32555176)

  • 21. Evaluation of polygenic prediction methodology within a reference-standardized framework.
    Pain O; Glanville KP; Hagenaars SP; Selzam S; Fürtjes AE; Gaspar HA; Coleman JRI; Rimfeld K; Breen G; Plomin R; Folkersen L; Lewis CM
    PLoS Genet; 2021 May; 17(5):e1009021. PubMed ID: 33945532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From Genotype to Phenotype: Polygenic Prediction of Complex Human Traits.
    Raben TG; Lello L; Widen E; Hsu SDH
    Methods Mol Biol; 2022; 2467():421-446. PubMed ID: 35451785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparing Within- and Between-Family Polygenic Score Prediction.
    Selzam S; Ritchie SJ; Pingault JB; Reynolds CA; O'Reilly PF; Plomin R
    Am J Hum Genet; 2019 Aug; 105(2):351-363. PubMed ID: 31303263
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiethnic polygenic risk scores improve risk prediction in diverse populations.
    Márquez-Luna C; Loh PR; ; ; Price AL
    Genet Epidemiol; 2017 Dec; 41(8):811-823. PubMed ID: 29110330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast kernel-based association testing of non-linear genetic effects for biobank-scale data.
    Fu B; Pazokitoroudi A; Sudarshan M; Liu Z; Subramanian L; Sankararaman S
    Nat Commun; 2023 Aug; 14(1):4936. PubMed ID: 37582955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polygenic prediction of breast cancer: comparison of genetic predictors and implications for risk stratification.
    Läll K; Lepamets M; Palover M; Esko T; Metspalu A; Tõnisson N; Padrik P; Mägi R; Fischer K
    BMC Cancer; 2019 Jun; 19(1):557. PubMed ID: 31182048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fine-scale population structure in the UK Biobank: implications for genome-wide association studies.
    Cook JP; Mahajan A; Morris AP
    Hum Mol Genet; 2020 Sep; 29(16):2803-2811. PubMed ID: 32691046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Negative selection on complex traits limits phenotype prediction accuracy between populations.
    Durvasula A; Lohmueller KE
    Am J Hum Genet; 2021 Apr; 108(4):620-631. PubMed ID: 33691092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fine mapping and accurate prediction of complex traits using Bayesian Variable Selection models applied to biobank-size data.
    de Los Campos G; Grueneberg A; Funkhouser S; Pérez-Rodríguez P; Samaddar A
    Eur J Hum Genet; 2023 Mar; 31(3):313-320. PubMed ID: 35853950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate and Scalable Construction of Polygenic Scores in Large Biobank Data Sets.
    Yang S; Zhou X
    Am J Hum Genet; 2020 May; 106(5):679-693. PubMed ID: 32330416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A tool for translating polygenic scores onto the absolute scale using summary statistics.
    Pain O; Gillett AC; Austin JC; Folkersen L; Lewis CM
    Eur J Hum Genet; 2022 Mar; 30(3):339-348. PubMed ID: 34983942
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PGS-server: accuracy, robustness and transferability of polygenic score methods for biobank scale studies.
    Yang S; Zhou X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35193147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A cross-disorder PRS-pheWAS of 5 major psychiatric disorders in UK Biobank.
    Leppert B; Millard LAC; Riglin L; Davey Smith G; Thapar A; Tilling K; Walton E; Stergiakouli E
    PLoS Genet; 2020 May; 16(5):e1008185. PubMed ID: 32392212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polygenic Susceptibility of Aortic Aneurysms Associates to the Diameter of the Aneurysm Sac: the Aneurysm-Express Biobank Cohort.
    van Laarhoven CJHCM; van Setten J; van Herwaarden JA; Pasterkamp G; de Kleijn DPV; de Borst GJ; van der Laan SW
    Sci Rep; 2019 Dec; 9(1):19844. PubMed ID: 31882626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank.
    Qian J; Tanigawa Y; Du W; Aguirre M; Chang C; Tibshirani R; Rivas MA; Hastie T
    PLoS Genet; 2020 Oct; 16(10):e1009141. PubMed ID: 33095761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Personalized genealogical history of UK individuals inferred from biobank-scale IBD segments.
    Naseri A; Tang K; Geng X; Shi J; Zhang J; Shakya P; Liu X; Zhang S; Zhi D
    BMC Biol; 2021 Feb; 19(1):32. PubMed ID: 33593342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genomic architecture and prediction of censored time-to-event phenotypes with a Bayesian genome-wide analysis.
    Ojavee SE; Kousathanas A; Trejo Banos D; Orliac EJ; Patxot M; Läll K; Mägi R; Fischer K; Kutalik Z; Robinson MR
    Nat Commun; 2021 Apr; 12(1):2337. PubMed ID: 33879782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relationships between estimated autozygosity and complex traits in the UK Biobank.
    Johnson EC; Evans LM; Keller MC
    PLoS Genet; 2018 Jul; 14(7):e1007556. PubMed ID: 30052639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Apparent latent structure within the UK Biobank sample has implications for epidemiological analysis.
    Haworth S; Mitchell R; Corbin L; Wade KH; Dudding T; Budu-Aggrey A; Carslake D; Hemani G; Paternoster L; Smith GD; Davies N; Lawson DJ; J Timpson N
    Nat Commun; 2019 Jan; 10(1):333. PubMed ID: 30659178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast estimation of genetic correlation for biobank-scale data.
    Wu Y; Burch KS; Ganna A; Pajukanta P; Pasaniuc B; Sankararaman S
    Am J Hum Genet; 2022 Jan; 109(1):24-32. PubMed ID: 34861179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.