BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32555319)

  • 21. Nano-scale spatial assessment of calcium distribution in coccolithophores using synchrotron-based nano-CT and STXM-NEXAFS.
    Sun S; Yao Y; Zou X; Fan S; Zhou Q; Dai Q; Dong F; Liu M; Nie X; Tan D; Li S
    Int J Mol Sci; 2014 Dec; 15(12):23604-15. PubMed ID: 25530614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coccolithophore biomineralization: New questions, new answers.
    Brownlee C; Wheeler GL; Taylor AR
    Semin Cell Dev Biol; 2015 Oct; 46():11-6. PubMed ID: 26498037
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphological development of Pleurochrysis carterae coccoliths examined by cryo-electron tomography.
    Walker JM; Marzec B; Ozaki N; Clare D; Nudelman F
    J Struct Biol; 2020 Apr; 210(1):107476. PubMed ID: 32018012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of living coccolithophores in eastern Indian Ocean during spring intermonsoon.
    Liu H; Sun J; Wang D; Zhang X; Zhang C; Song S; Thangaraj S
    Sci Rep; 2018 Aug; 8(1):12488. PubMed ID: 30131499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coccolith mass and morphology of different Emiliania huxleyi morphotypes: A critical examination using Canary Islands material.
    Linge Johnsen SA; Bollmann J
    PLoS One; 2020; 15(3):e0230569. PubMed ID: 32218602
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracking single coccolith dissolution with picogram resolution and implications for CO2 sequestration and ocean acidification.
    Hassenkam T; Johnsson A; Bechgaard K; Stipp SL
    Proc Natl Acad Sci U S A; 2011 May; 108(21):8571-6. PubMed ID: 21551094
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extreme strontium concentrations reveal specific biomineralization pathways in certain coccolithophores with implications for the Sr/Ca paleoproductivity proxy.
    Hermoso M; Lefeuvre B; Minoletti F; de Rafélis M
    PLoS One; 2017; 12(10):e0185655. PubMed ID: 29036179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. X-ray nanotomography of coccolithophores reveals that coccolith mass and segment number correlate with grid size.
    Beuvier T; Probert I; Beaufort L; Suchéras-Marx B; Chushkin Y; Zontone F; Gibaud A
    Nat Commun; 2019 Feb; 10(1):751. PubMed ID: 30765698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The uronic acid content of coccolith-associated polysaccharides provides insight into coccolithogenesis and past climate.
    Lee RB; Mavridou DA; Papadakos G; McClelland HL; Rickaby RE
    Nat Commun; 2016 Oct; 7():13144. PubMed ID: 27782214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional architecture and surface functionality of coccolith base plates.
    Marzec B; Walker JM; Panagopoulou M; Jhons Y; Clare D; Wheeler A; Shaver MP; Nudelman F
    J Struct Biol; 2019 Nov; 208(2):127-136. PubMed ID: 31437582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploiting algal mineralization for nanotechnology: bringing coccoliths to the fore.
    Skeffington AW; Scheffel A
    Curr Opin Biotechnol; 2018 Feb; 49():57-63. PubMed ID: 28822276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorptive exchange of coccolith biominerals facilitates viral infection.
    Johns CT; Bondoc-Naumovitz KG; Matthews A; Matson PG; Iglesias-Rodriguez MD; Taylor AR; Fuchs HL; Bidle KD
    Sci Adv; 2023 Jan; 9(3):eadc8728. PubMed ID: 36662866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Light scattering by coccoliths detached from Emiliania huxleyi.
    Gordon HR; Smyth TJ; Balch WM; Boynton GC; Tarran GA
    Appl Opt; 2009 Nov; 48(31):6059-73. PubMed ID: 19881674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular morphological trait dataset for extant coccolithophores from the Atlantic Ocean.
    Sheward RM; Poulton AJ; Young JR; de Vries J; Monteiro FM; Herrle JO
    Sci Data; 2024 Jul; 11(1):720. PubMed ID: 38956105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A vacuole-like compartment concentrates a disordered calcium phase in a key coccolithophorid alga.
    Sviben S; Gal A; Hood MA; Bertinetti L; Politi Y; Bennet M; Krishnamoorthy P; Schertel A; Wirth R; Sorrentino A; Pereiro E; Faivre D; Scheffel A
    Nat Commun; 2016 Apr; 7():11228. PubMed ID: 27075521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Ca and Mg on growth and calcification of the coccolithophorid Pleurochrysis haptonemofera: Ca requirement for cell division in coccolith-bearing cells and for normal coccolith formation with acidic polysaccharides.
    Katagiri F; Takatsuka Y; Fujiwara S; Tsuzuki M
    Mar Biotechnol (NY); 2010 Feb; 12(1):42-51. PubMed ID: 19444518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator.
    Mizukawa Y; Miyashita Y; Satoh M; Shiraiwa Y; Iwasaka M
    Sci Rep; 2015 Sep; 5():13577. PubMed ID: 26323524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO
    Tong S; Gao K; Hutchins DA
    Glob Chang Biol; 2018 Jul; 24(7):3055-3064. PubMed ID: 29356310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relationship between coccolith length and thickness in the coccolithophore species Emiliania huxleyi and Gephyrocapsa oceanica.
    Linge Johnsen SA; Bollmann J; Gebuehr C; Herrle JO
    PLoS One; 2019; 14(8):e0220725. PubMed ID: 31381588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of coccolith polysaccharides isolated from the coccolithophorid, Emiliania huxleyi, on calcite crystal formation in in vitro CaCO3 crystallization.
    Kayano K; Saruwatari K; Kogure T; Shiraiwa Y
    Mar Biotechnol (NY); 2011 Feb; 13(1):83-92. PubMed ID: 20336339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.