These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32555319)

  • 41. Macromolecular recognition directs calcium ions to coccolith mineralization sites.
    Gal A; Wirth R; Kopka J; Fratzl P; Faivre D; Scheffel A
    Science; 2016 Aug; 353(6299):590-3. PubMed ID: 27493186
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of coccolithophore calcification in bioengineering their environment.
    Flynn KJ; Clark DR; Wheeler G
    Proc Biol Sci; 2016 Jun; 283(1833):. PubMed ID: 27358373
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Native-state imaging of calcifying and noncalcifying microalgae reveals similarities in their calcium storage organelles.
    Gal A; Sorrentino A; Kahil K; Pereiro E; Faivre D; Scheffel A
    Proc Natl Acad Sci U S A; 2018 Oct; 115(43):11000-11005. PubMed ID: 30287487
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An experimental study on post-mortem dissolution and overgrowth processes affecting coccolith assemblages: A rapid and complex process.
    Holcová K; Scheiner F
    Geobiology; 2023 Mar; 21(2):193-209. PubMed ID: 36218003
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The origin of carbon isotope vital effects in coccolith calcite.
    McClelland HL; Bruggeman J; Hermoso M; Rickaby RE
    Nat Commun; 2017 Mar; 8():14511. PubMed ID: 28262764
    [TBL] [Abstract][Full Text] [Related]  

  • 46. COCCOLITH FUNCTION AND MORPHOGENESIS: INSIGHTS FROM APPENDAGE-BEARING COCCOLITHOPHORES OF THE FAMILY SYRACOSPHAERACEAE (HAPTOPHYTA)(1).
    Young JR; Andruleit H; Probert I
    J Phycol; 2009 Feb; 45(1):213-26. PubMed ID: 27033659
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coccolith-calcite Sr/Ca as a proxy for transient export production related to Saharan dust deposition in the tropical North Atlantic.
    Guerreiro CV; Ziveri P; Cavaleiro C; Stuut JW
    Sci Rep; 2024 Feb; 14(1):4295. PubMed ID: 38383618
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Coccolith dissolution within copepod guts affects fecal pellet density and sinking rate.
    White MM; Waller JD; Lubelczyk LC; Drapeau DT; Bowler BC; Balch WM; Fields DM
    Sci Rep; 2018 Jun; 8(1):9758. PubMed ID: 29950576
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of the molecular mechanisms of silicon uptake in coccolithophores.
    Ratcliffe S; Meyer EM; Walker CE; Knight M; McNair HM; Matson PG; Iglesias-Rodriguez D; Brzezinski M; Langer G; Sadekov A; Greaves M; Brownlee C; Curnow P; Taylor AR; Wheeler GL
    Environ Microbiol; 2023 Feb; 25(2):315-330. PubMed ID: 36397254
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of silicon in the development of complex crystal shapes in coccolithophores.
    Langer G; Taylor AR; Walker CE; Meyer EM; Ben Joseph O; Gal A; Harper GM; Probert I; Brownlee C; Wheeler GL
    New Phytol; 2021 Sep; 231(5):1845-1857. PubMed ID: 33483994
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Intracellular nanoscale architecture as a master regulator of calcium carbonate crystallization in marine microalgae.
    Kadan Y; Tollervey F; Varsano N; Mahamid J; Gal A
    Proc Natl Acad Sci U S A; 2021 Nov; 118(46):. PubMed ID: 34772804
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coccolithophore Cell Biology: Chalking Up Progress.
    Taylor AR; Brownlee C; Wheeler G
    Ann Rev Mar Sci; 2017 Jan; 9():283-310. PubMed ID: 27814031
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of CaCO(3) formation in coccolithophores.
    Marsh ME
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Dec; 136(4):743-54. PubMed ID: 14662299
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton.
    Gafar NA; Eyre BD; Schulz KG
    Sci Rep; 2019 Feb; 9(1):2486. PubMed ID: 30792404
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Opto-Electrochemical Dissolution Reveals Coccolith Calcium Carbonate Content.
    Yang M; Batchelor-McAuley C; Barton S; Rickaby REM; Bouman HA; Compton RG
    Angew Chem Int Ed Engl; 2021 Sep; 60(38):20999-21006. PubMed ID: 34288323
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biomineralization in coccolithophores.
    Marsh ME
    Gravit Space Biol Bull; 1999 May; 12(2):5-14. PubMed ID: 11541783
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploring Intracellular Ion Pools in Coccolithophores Using Live-Cell Imaging.
    Peled-Zehavi H; Gal A
    Adv Biol (Weinh); 2021 Jun; 5(6):e2000296. PubMed ID: 33852773
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Taxonomy and morphology of Calciopappus curvus sp. nov. (Syracosphaeraceae, Prymnesiophyceae), a novel appendage-bearing coccolithophore.
    Archontikis OA; Millán JG; Andruleit H; Cros L; Kleijne A; Heldal M; Doan-Nhu H; Winter A; Blanco-Bercial L; Young JR
    Protist; 2023 Oct; 174(5):125983. PubMed ID: 37573812
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores.
    Taylor AR; Chrachri A; Wheeler G; Goddard H; Brownlee C
    PLoS Biol; 2011 Jun; 9(6):e1001085. PubMed ID: 21713028
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Perspectives on heterococcolith geochemical proxies based on high-resolution X-ray fluorescence mapping.
    Suchéras-Marx B; Giraud F; Simionovici A; Daniel I; Tucoulou R
    Geobiology; 2016 Jul; 14(4):390-403. PubMed ID: 26864732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.