These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32555458)

  • 1. The proteome landscape of the kingdoms of life.
    Müller JB; Geyer PE; Colaço AR; Treit PV; Strauss MT; Oroshi M; Doll S; Virreira Winter S; Bader JM; Köhler N; Theis F; Santos A; Mann M
    Nature; 2020 Jun; 582(7813):592-596. PubMed ID: 32555458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evosep One Enables Robust Deep Proteome Coverage Using Tandem Mass Tags while Significantly Reducing Instrument Time.
    Krieger JR; Wybenga-Groot LE; Tong J; Bache N; Tsao MS; Moran MF
    J Proteome Res; 2019 May; 18(5):2346-2353. PubMed ID: 30938160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute quantification strategies in proteomics based on mass spectrometry.
    Brönstrup M
    Expert Rev Proteomics; 2004 Dec; 1(4):503-12. PubMed ID: 15966845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A two-stage spin cartridge for integrated protein precipitation, digestion and SDS removal in a comparative bottom-up proteomics workflow.
    Crowell AM; MacLellan DL; Doucette AA
    J Proteomics; 2015 Apr; 118():140-50. PubMed ID: 25316050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical comparison of multidimensional separation methods for increasing protein expression coverage.
    Antberg L; Cifani P; Sandin M; Levander F; James P
    J Proteome Res; 2012 May; 11(5):2644-52. PubMed ID: 22449141
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning the collisional cross sections of the peptide universe from a million experimental values.
    Meier F; Köhler ND; Brunner AD; Wanka JH; Voytik E; Strauss MT; Theis FJ; Mann M
    Nat Commun; 2021 Feb; 12(1):1185. PubMed ID: 33608539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families.
    Austin RS; Provart NJ; Cutler SR
    BMC Genomics; 2007 Jun; 8():191. PubMed ID: 17594486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of uncertainty of peptide retention time predictions from a sequence-based model in LC-MS/MS proteomics experiments.
    Yanofsky CM; Kearney RE; Lesimple S; Bergeron JJ; Boismenu D; Carrillo B; Bell AW
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1221-4. PubMed ID: 18002183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry.
    Schopper S; Kahraman A; Leuenberger P; Feng Y; Piazza I; Müller O; Boersema PJ; Picotti P
    Nat Protoc; 2017 Nov; 12(11):2391-2410. PubMed ID: 29072706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Introduction to Proteomics Technologies.
    Lenz C; Dihazi H
    Methods Mol Biol; 2016; 1362():3-27. PubMed ID: 26519167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.
    Lindahl M; Mata-Cabana A; Kieselbach T
    Antioxid Redox Signal; 2011 Jun; 14(12):2581-642. PubMed ID: 21275844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current methods for global proteome identification.
    Vaudel M; Sickmann A; Martens L
    Expert Rev Proteomics; 2012 Oct; 9(5):519-32. PubMed ID: 23194269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis.
    Di Palma S; Hennrich ML; Heck AJ; Mohammed S
    J Proteomics; 2012 Jul; 75(13):3791-813. PubMed ID: 22561838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active Instrument Engagement Combined with a Real-Time Database Search for Improved Performance of Sample Multiplexing Workflows.
    Erickson BK; Mintseris J; Schweppe DK; Navarrete-Perea J; Erickson AR; Nusinow DP; Paulo JA; Gygi SP
    J Proteome Res; 2019 Mar; 18(3):1299-1306. PubMed ID: 30658528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics beyond trypsin.
    Tsiatsiani L; Heck AJ
    FEBS J; 2015 Jul; 282(14):2612-26. PubMed ID: 25823410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Quantitative SRM-Based Proteomics Method to Study Iron Metabolism of Synechocystis sp. PCC 6803.
    Vuorijoki L; Isojärvi J; Kallio P; Kouvonen P; Aro EM; Corthals GL; Jones PR; Muth-Pawlak D
    J Proteome Res; 2016 Jan; 15(1):266-79. PubMed ID: 26652789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteome digestion specificity analysis for rational design of extended bottom-up and middle-down proteomics experiments.
    Laskay ÜA; Lobas AA; Srzentić K; Gorshkov MV; Tsybin YO
    J Proteome Res; 2013 Dec; 12(12):5558-69. PubMed ID: 24171472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed quantitative phosphoproteomics of cell line and tissue samples.
    Kreuzer J; Edwards A; Haas W
    Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel "omics" approach for study of low-abundance, low-molecular-weight components of a complex biological tissue: regional differences between chorionic and basal plates of the human placenta.
    Kedia K; Nichols CA; Thulin CD; Graves SW
    Anal Bioanal Chem; 2015 Nov; 407(28):8543-56. PubMed ID: 26350236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.