BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 32555594)

  • 1. Modeling manual wheelchair propulsion cost during straight and curvilinear trajectories.
    Misch J; Huang M; Sprigle S
    PLoS One; 2020; 15(6):e0234742. PubMed ID: 32555594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manual wheelchair propulsion cost across different components and configurations during straight and turning maneuvers.
    Sprigle S; Huang M
    J Rehabil Assist Technol Eng; 2020; 7():2055668320907819. PubMed ID: 32292593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of wheels and tires on high-strength lightweight wheelchair propulsion cost using a robotic wheelchair tester.
    Misch J; Sprigle S
    Disabil Rehabil Assist Technol; 2023 Nov; 18(8):1393-1403. PubMed ID: 34958616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.
    Sprigle S; Huang M
    Assist Technol; 2015; 27(4):226-35; quiz 236-7. PubMed ID: 26691562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of operator and wheelchair factors on wheelchair propulsion effort.
    Lin JT; Sprigle S
    Disabil Rehabil Assist Technol; 2020 Apr; 15(3):328-335. PubMed ID: 30810404
    [No Abstract]   [Full Text] [Related]  

  • 6. Design of a Robotic System to Measure Propulsion Work of Over-Ground Wheelchair Maneuvers.
    Liles H; Huang M; Caspall J; Sprigle S
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):983-91. PubMed ID: 25420269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Three Versions of a Wheelchair Ergometer for Curvilinear Manual Wheelchair Propulsion Using Virtual Reality.
    Salimi Z; Ferguson-Pell M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1215-1222. PubMed ID: 29877846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial and frictional influences of instrumented wheelchair wheels.
    Sprigle S; Huang M; Lin JT
    J Rehabil Assist Technol Eng; 2016; 3():2055668316649892. PubMed ID: 31186904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of rolling resistance and scrub torque of manual wheelchair drive wheels and casters.
    Sprigle S; Huang M; Misch J
    Assist Technol; 2022 Jan; 34(1):91-103. PubMed ID: 31891276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Incremental Changes to Frame Mass on Manual Wheelchair Propulsion Cost.
    Misch J; Sprigle S
    ASME Open J Eng; 2023; 2():. PubMed ID: 38529126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new dynamic model of the manual wheelchair for straight and curvilinear propulsion.
    Chénier F; Bigras P; Aissaoui R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975357. PubMed ID: 22275561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in inertia and effect on turning effort across different wheelchair configurations.
    Caspall JJ; Seligsohn E; Dao PV; Sprigle S
    J Rehabil Res Dev; 2013; 50(10):1353-62. PubMed ID: 24699971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Wheels, Casters and Forks on Vibration Attenuation and Propulsion Cost of Manual Wheelchairs.
    Misch JP; Liu Y; Sprigle S
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2661-2670. PubMed ID: 36083953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of wheelchair resistive forces during straight and turning trajectories across different wheelchair configurations using free-wheeling coast-down test.
    Lin JT; Huang M; Sprigle S
    J Rehabil Res Dev; 2015; 52(7):763-74. PubMed ID: 26745011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematics and pushrim kinetics in adolescents propelling high-strength lightweight and ultra-lightweight manual wheelchairs.
    Oliveira N; Blochlinger S; Ehrenberg N; Defosse T; Forrest G; Dyson-Hudson T; Barrance P
    Disabil Rehabil Assist Technol; 2019 Apr; 14(3):209-216. PubMed ID: 29271676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analytical model of the demand for propulsion torque during manual wheelchair propelling.
    Kukla M; Wieczorek B; Warguła Ł; Berdychowski M
    Disabil Rehabil Assist Technol; 2021 Jan; 16(1):9-16. PubMed ID: 31267792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of axle position and the use of accessories on the activity of upper limb muscles during manual wheelchair propulsion.
    Bertolaccini GDS; Carvalho Filho IFP; Christofoletti G; Paschoarelli LC; Medola FO
    Int J Occup Saf Ergon; 2018 Jun; 24(2):311-315. PubMed ID: 28278008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Manual Wheelchair and Pushrim-Activated Power-Assisted Wheelchair Propulsion Characteristics during Common Over-Ground Maneuvers.
    Khalili M; Kryt G; Mortenson WB; Van der Loos HFM; Borisoff J
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On "impact of surface type, wheelchair weight, and axle position on wheelchair propulsion by novice older adults".
    Sprigle S
    Arch Phys Med Rehabil; 2009 Jul; 90(7):1073-5. PubMed ID: 19577018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partitioning kinetic energy during freewheeling wheelchair maneuvers.
    Medola FO; Dao PV; Caspall JJ; Sprigle S
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):326-33. PubMed ID: 24235308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.