BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 32555780)

  • 1. Construction and application of textile-based tissue engineering scaffolds: a review.
    Jiao Y; Li C; Liu L; Wang F; Liu X; Mao J; Wang L
    Biomater Sci; 2020 Jul; 8(13):3574-3600. PubMed ID: 32555780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Textile-templated electrospun anisotropic scaffolds for tissue engineering and regenerative medicine.
    Senel-Ayaz HG; Perets A; Govindaraj M; Brookstein D; Lelkes PI
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():255-8. PubMed ID: 21096749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of textile technology in tissue engineering: A review.
    Jiang C; Wang K; Liu Y; Zhang C; Wang B
    Acta Biomater; 2021 Jul; 128():60-76. PubMed ID: 33962070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotropic and Anisotropic Scaffolds for Tissue Engineering: Collagen, Conventional, and Textile Fabrication Technologies and Properties.
    Tonndorf R; Aibibu D; Cherif C
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.
    Akbari M; Tamayol A; Bagherifard S; Serex L; Mostafalu P; Faramarzi N; Mohammadi MH; Khademhosseini A
    Adv Healthc Mater; 2016 Apr; 5(7):751-66. PubMed ID: 26924450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of biodegradable textile scaffold based on hydrophobized hyaluronic acid.
    Zapotocky V; Pospisilova M; Janouchova K; Svadlak D; Batova J; Sogorkova J; Cepa M; Betak J; Stepankova V; Sulakova R; Kulhanek J; Pitucha T; Vranova J; Duffy G; Velebny V
    Int J Biol Macromol; 2017 Feb; 95():903-909. PubMed ID: 27794440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds.
    Engelmayr GC; Sacks MS
    J Biomech Eng; 2006 Aug; 128(4):610-22. PubMed ID: 16813453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.
    Şenel Ayaz HG; Perets A; Ayaz H; Gilroy KD; Govindaraj M; Brookstein D; Lelkes PI
    Biomaterials; 2014 Oct; 35(30):8540-52. PubMed ID: 25017096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Textile-based sandwich scaffold using wet electrospun yarns for skin tissue engineering.
    Jiang C; Wang K; Liu Y; Zhang C; Wang B
    J Mech Behav Biomed Mater; 2021 Jul; 119():104499. PubMed ID: 33857876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro evaluation of textile chitosan scaffolds for tissue engineering using human bone marrow stromal cells.
    Heinemann C; Heinemann S; Lode A; Bernhardt A; Worch H; Hanke T
    Biomacromolecules; 2009 May; 10(5):1305-10. PubMed ID: 19344120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Wet Electrospun PCL/Gelatin/CNT Yarns to Fabricate Textile-Based Scaffolds for Vascular Tissue Engineering.
    Jiang C; Wang K; Liu Y; Zhang C; Wang B
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2627-2637. PubMed ID: 33821604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of bionic tissue engineering cartilage scaffold based on three-dimensional printing and oriented frozen technology.
    Xu Y; Guo X; Yang S; Li L; Zhang P; Sun W; Liu C; Mi S
    J Biomed Mater Res A; 2018 Jun; 106(6):1664-1676. PubMed ID: 29460433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Textile cell-free scaffolds for in situ tissue engineering applications.
    Aibibu D; Hild M; Wöltje M; Cherif C
    J Mater Sci Mater Med; 2016 Mar; 27(3):63. PubMed ID: 26800694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatibility properties of polyamide 6/PCL blends composite textile scaffold using EA.hy926 human endothelial cells.
    Abdal-Hay A; Abdelrazek Khalil K; Al-Jassir FF; Gamal-Eldeen AM
    Biomed Mater; 2017 May; 12(3):035002. PubMed ID: 28238969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrous biomaterials: Effect of textile topography on foreign body reaction.
    Girault E; Biguenet F; Eidenschenk A; Dupuis D; Barbet R; Heim F
    J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1512-1524. PubMed ID: 33523550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, Properties, and Application of Graphene-Based Materials in Tissue Engineering Scaffolds.
    Xue W; Du J; Li Q; Wang Y; Lu Y; Fan J; Yu S; Yang Y
    Tissue Eng Part B Rev; 2022 Oct; 28(5):1121-1136. PubMed ID: 34751592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid and Composite Scaffolds Based on Extracellular Matrices for Cartilage Tissue Engineering.
    Setayeshmehr M; Esfandiari E; Rafieinia M; Hashemibeni B; Taheri-Kafrani A; Samadikuchaksaraei A; Kaplan DL; Moroni L; Joghataei MT
    Tissue Eng Part B Rev; 2019 Jun; 25(3):202-224. PubMed ID: 30648478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.