These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32555866)

  • 1. Rheology of capillary foams.
    Okesanjo O; Tennenbaum M; Fernandez-Nieves A; Meredith JC; Behrens SH
    Soft Matter; 2020 Aug; 16(29):6725-6732. PubMed ID: 32555866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-Property Relationship in Capillary Foams.
    Okesanjo O; Meredith JC; Behrens SH
    Langmuir; 2021 Sep; 37(35):10510-10520. PubMed ID: 34435492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Shear on Pumped Capillary Foams.
    Okesanjo O; Meredith JC; Behrens SH
    Ind Eng Chem Res; 2023 May; 62(18):7031-7039. PubMed ID: 37191909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultradry Carbon Dioxide-in-Water Foams with Viscoelastic Aqueous Phases.
    Xue Z; Worthen AJ; Da C; Qajar A; Ketchum IR; Alzobaidi S; Huh C; Prodanović M; Johnston KP
    Langmuir; 2016 Jan; 32(1):28-37. PubMed ID: 26666311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High temperature ultralow water content carbon dioxide-in-water foam stabilized with viscoelastic zwitterionic surfactants.
    Alzobaidi S; Da C; Tran V; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2017 Feb; 488():79-91. PubMed ID: 27821342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bubble-particle dynamics in multiphase flow of capillary foams in a porous micromodel.
    Okesanjo O; Aubry G; Behrens S; Lu H; Meredith JC
    Lab Chip; 2023 Oct; 23(20):4434-4444. PubMed ID: 37740290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viscoelastic diamine surfactant for stable carbon dioxide/water foams over a wide range in salinity and temperature.
    Elhag AS; Da C; Chen Y; Mukherjee N; Noguera JA; Alzobaidi S; Reddy PP; AlSumaiti AM; Hirasaki GJ; Biswal SL; Nguyen QP; Johnston KP
    J Colloid Interface Sci; 2018 Jul; 522():151-162. PubMed ID: 29597127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of liquid foams through the synergistic action of particles and an immiscible liquid.
    Zhang Y; Wu J; Wang H; Meredith JC; Behrens SH
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13385-9. PubMed ID: 25284445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheology of milk foams produced by steam injection.
    Jimenez-Junca CA; Gumy JC; Sher A; Niranjan K
    J Food Sci; 2011; 76(9):E569-75. PubMed ID: 22416702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Food-grade monoglyceride oil foams: the effect of tempering on foamability, foam stability and rheological properties.
    Heymans R; Tavernier I; Danthine S; Rimaux T; Van der Meeren P; Dewettinck K
    Food Funct; 2018 Jun; 9(6):3143-3154. PubMed ID: 29790526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-aqueous foams: Current understanding on the formation and stability mechanisms.
    Fameau AL; Saint-Jalmes A
    Adv Colloid Interface Sci; 2017 Sep; 247():454-464. PubMed ID: 28245904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO
    Wang J; Liang M; Tian Q; Feng Y; Yin H; Lu G
    J Colloid Interface Sci; 2018 Aug; 523():65-74. PubMed ID: 29609125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Foams with Enhanced Rheology for Stopping Bleeding.
    Choudhary H; Rudy MB; Dowling MB; Raghavan SR
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):13958-13967. PubMed ID: 33749251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelasticity of liquid organic foam: relaxations, temporal dependence, and bubble loading effects on flow behavior.
    Kropka JM; Celina M
    J Chem Phys; 2010 Jul; 133(2):024904. PubMed ID: 20632773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled elasticity in soft solid foams.
    Gorlier F; Khidas Y; Pitois O
    J Colloid Interface Sci; 2017 Sep; 501():103-111. PubMed ID: 28437698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal strengthening of particle-loaded liquid foams.
    Gorlier F; Khidas Y; Fall A; Pitois O
    Phys Rev E; 2017 Apr; 95(4-1):042604. PubMed ID: 28505841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smart Nonaqueous Foams from Lipid-Based Oleogel.
    Fameau AL; Lam S; Arnould A; Gaillard C; Velev OD; Saint-Jalmes A
    Langmuir; 2015 Dec; 31(50):13501-10. PubMed ID: 26606128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances and challenges in the high-pressure rheology of complex fluids.
    Ahuja A; Lee R; Joshi YM
    Adv Colloid Interface Sci; 2021 Aug; 294():102472. PubMed ID: 34311156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hysteresis and avalanches in two-dimensional foam rheology simulations.
    Jiang Y; Swart PJ; Saxena A; Asipauskas M; Glazier JA
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5819-32. PubMed ID: 11969562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes.
    Xue Z; Worthen A; Qajar A; Robert I; Bryant SL; Huh C; Prodanović M; Johnston KP
    J Colloid Interface Sci; 2016 Jan; 461():383-395. PubMed ID: 26414421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.