These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 32556216)
1. Synteny-Guided Resolution of Gene Trees Clarifies the Functional Impact of Whole-Genome Duplications. Parey E; Louis A; Cabau C; Guiguen Y; Roest Crollius H; Berthelot C Mol Biol Evol; 2020 Nov; 37(11):3324-3337. PubMed ID: 32556216 [TBL] [Abstract][Full Text] [Related]
2. SCORPiOs, a Novel Method to Reconstruct Gene Phylogenies in the Context of a Known WGD Event. Parey E; Roest Crollius H; Berthelot C Methods Mol Biol; 2023; 2545():155-173. PubMed ID: 36720812 [TBL] [Abstract][Full Text] [Related]
3. Species-tree topology impacts the inference of ancient whole-genome duplications across the angiosperm phylogeny. McKibben MTW; Finch G; Barker MS Am J Bot; 2024 Aug; 111(8):e16378. PubMed ID: 39039654 [TBL] [Abstract][Full Text] [Related]
4. Detecting and locating whole genome duplications on a phylogeny: a probabilistic approach. Rabier CE; Ta T; Ané C Mol Biol Evol; 2014 Mar; 31(3):750-62. PubMed ID: 24361993 [TBL] [Abstract][Full Text] [Related]
5. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. Sato Y; Hashiguchi Y; Nishida M BMC Evol Biol; 2009 Jun; 9():127. PubMed ID: 19500364 [TBL] [Abstract][Full Text] [Related]
6. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish. Voldoire E; Brunet F; Naville M; Volff JN; Galiana D PLoS One; 2017; 12(7):e0180936. PubMed ID: 28738066 [TBL] [Abstract][Full Text] [Related]
7. Distinct functions of two olfactory marker protein genes derived from teleost-specific whole genome duplication. Suzuki H; Nikaido M; Hagino-Yamagishi K; Okada N BMC Evol Biol; 2015 Nov; 15():245. PubMed ID: 26555542 [TBL] [Abstract][Full Text] [Related]
8. Orthologs, turn-over, and remolding of tRNAs in primates and fruit flies. Velandia-Huerto CA; Berkemer SJ; Hoffmann A; Retzlaff N; Romero Marroquín LC; Hernández-Rosales M; Stadler PF; Bermúdez-Santana CI BMC Genomics; 2016 Aug; 17(1):617. PubMed ID: 27515907 [TBL] [Abstract][Full Text] [Related]
9. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Kassahn KS; Dang VT; Wilkins SJ; Perkins AC; Ragan MA Genome Res; 2009 Aug; 19(8):1404-18. PubMed ID: 19439512 [TBL] [Abstract][Full Text] [Related]
10. DupScan: predicting and visualizing vertebrate genome duplication database. Lu J; Huang P; Sun J; Liu J Nucleic Acids Res; 2023 Jan; 51(D1):D906-D912. PubMed ID: 36018807 [TBL] [Abstract][Full Text] [Related]
11. Basal teleosts provide new insights into the evolutionary history of teleost-duplicated aromatase. Lin CJ; Maugars G; Lafont AG; Jeng SR; Wu GC; Dufour S; Chang CF Gen Comp Endocrinol; 2020 May; 291():113395. PubMed ID: 31981691 [TBL] [Abstract][Full Text] [Related]
12. Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications. Siegel N; Hoegg S; Salzburger W; Braasch I; Meyer A BMC Genomics; 2007 Sep; 8():312. PubMed ID: 17822543 [TBL] [Abstract][Full Text] [Related]
13. OHNOLOGS v2: a comprehensive resource for the genes retained from whole genome duplication in vertebrates. Singh PP; Isambert H Nucleic Acids Res; 2020 Jan; 48(D1):D724-D730. PubMed ID: 31612943 [TBL] [Abstract][Full Text] [Related]
14. Gene loss and evolutionary rates following whole-genome duplication in teleost fishes. Brunet FG; Roest Crollius H; Paris M; Aury JM; Gibert P; Jaillon O; Laudet V; Robinson-Rechavi M Mol Biol Evol; 2006 Sep; 23(9):1808-16. PubMed ID: 16809621 [TBL] [Abstract][Full Text] [Related]
15. Model-Based Detection of Whole-Genome Duplications in a Phylogeny. Zwaenepoel A; Van de Peer Y Mol Biol Evol; 2020 Sep; 37(9):2734-2746. PubMed ID: 32359154 [TBL] [Abstract][Full Text] [Related]
16. Phylogeny and multiple independent whole-genome duplication events in the Brassicales. Mabry ME; Brose JM; Blischak PD; Sutherland B; Dismukes WT; Bottoms CA; Edger PP; Washburn JD; An H; Hall JC; McKain MR; Al-Shehbaz I; Barker MS; Schranz ME; Conant GC; Pires JC Am J Bot; 2020 Aug; 107(8):1148-1164. PubMed ID: 32830865 [TBL] [Abstract][Full Text] [Related]
17. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling. Inoue J; Sato Y; Sinclair R; Tsukamoto K; Nishida M Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14918-23. PubMed ID: 26578810 [TBL] [Abstract][Full Text] [Related]
18. Fossilized cell structures identify an ancient origin for the teleost whole-genome duplication. Davesne D; Friedman M; Schmitt AD; Fernandez V; Carnevale G; Ahlberg PE; Sanchez S; Benson RBJ Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301898 [TBL] [Abstract][Full Text] [Related]
19. Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins. Mühlhausen S; Kollmar M BMC Evol Biol; 2013 Sep; 13():202. PubMed ID: 24053117 [TBL] [Abstract][Full Text] [Related]
20. Comparative studies on duplicated tdrd7 paralogs in teleosts: Molecular evolution caused neo-functionalization. Wang B; Du X; Wang H; Jin C; Gao C; Liu J; Zhang Q Comp Biochem Physiol Part D Genomics Proteomics; 2019 Jun; 30():347-357. PubMed ID: 31059868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]