These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 32556242)

  • 1. A deep learning-based algorithm for detection of cortical arousal during sleep.
    Li A; Chen S; Quan SF; Powers LS; Roveda JM
    Sleep; 2020 Dec; 43(12):. PubMed ID: 32556242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic Sleep-Arousal Detection with Single-Lead EEG Using Stacking Ensemble Learning.
    Chien YR; Wu CH; Tsao HW
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ECG-based algorithm for the automatic identification of autonomic activations associated with cortical arousal.
    Basner M; Griefahn B; Müller U; Plath G; Samel A
    Sleep; 2007 Oct; 30(10):1349-61. PubMed ID: 17969469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-task learning for arousal and sleep stage detection using fully convolutional networks.
    Zan H; Yildiz A
    J Neural Eng; 2023 Oct; 20(5):. PubMed ID: 37769664
    [No Abstract]   [Full Text] [Related]  

  • 5. Coupling analysis of heart rate variability and cortical arousal using a deep learning algorithm.
    Huo J; Quan SF; Roveda J; Li A
    PLoS One; 2023; 18(4):e0284167. PubMed ID: 37023117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DOSED: A deep learning approach to detect multiple sleep micro-events in EEG signal.
    Chambon S; Thorey V; Arnal PJ; Mignot E; Gramfort A
    J Neurosci Methods; 2019 Jun; 321():64-78. PubMed ID: 30946878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic, electrocardiographic-based detection of autonomic arousals and their association with cortical arousals, leg movements, and respiratory events in sleep.
    Olsen M; Schneider LD; Cheung J; Peppard PE; Jennum PJ; Mignot E; Sorensen HBD
    Sleep; 2018 Mar; 41(3):. PubMed ID: 29329416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroencephalogram characteristics of autonomic arousals during sleep in healthy men.
    Togo F; Cherniack NS; Natelson BH
    Clin Neurophysiol; 2006 Dec; 117(12):2597-603. PubMed ID: 17011823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SleepNet: automated sleep analysis via dense convolutional neural network using physiological time series.
    Pourbabaee B; Patterson MH; Patterson MR; Benard F
    Physiol Meas; 2019 Sep; 40(8):084005. PubMed ID: 31349239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Detection of Respiratory Effort Related Arousals With Deep Neural Networks From Polysomnographic Recordings.
    Wickramaratne SD; Mahmud MS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():154-157. PubMed ID: 33017953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep convolutional architecture-based hybrid learning for sleep arousal events detection through single-lead EEG signals.
    Foroughi A; Farokhi F; Rahatabad FN; Kashaninia A
    Brain Behav; 2023 Jun; 13(6):e3028. PubMed ID: 37199053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG beta power and heart rate variability describe the association between cortical and autonomic arousals across sleep.
    Kuo TB; Chen CY; Hsu YC; Yang CC
    Auton Neurosci; 2016 Jan; 194():32-7. PubMed ID: 26681575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Approach for Sleep Arousal Disorder Detection Based on the Interaction of Physiological Signals and Metaheuristic Learning.
    Badiei A; Meshgini S; Rezaee K
    Comput Intell Neurosci; 2023; 2023():9379618. PubMed ID: 36688224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient automatic arousals detection algorithm in single channel EEG.
    Ugur TK; Erdamar A
    Comput Methods Programs Biomed; 2019 May; 173():131-138. PubMed ID: 31046987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepSleep convolutional neural network allows accurate and fast detection of sleep arousal.
    Li H; Guan Y
    Commun Biol; 2021 Jan; 4(1):18. PubMed ID: 33398048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot study: can machine learning analyses of movement discriminate between leg movements in sleep (LMS) with vs. without cortical arousals?
    Jha A; Banerjee N; Feltch C; Robucci R; Earley CJ; Lam J; Allen R
    Sleep Breath; 2021 Mar; 25(1):373-379. PubMed ID: 32451761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Automated detection of sleep-arousal using multi-scale convolution and self-attention mechanism].
    Li F; Xu Y; Zhang B; Cong F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Feb; 40(1):27-34. PubMed ID: 36854545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pilot study to understand the relationship between cortical arousals and leg movements during sleep.
    Bansal K; Garcia J; Feltch C; Earley C; Robucci R; Banerjee N; Brooks J
    Sci Rep; 2022 Jul; 12(1):12685. PubMed ID: 35879382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep transfer learning for improving single-EEG arousal detection.
    Olesen AN; Jennum P; Mignot E; Sorensen HBD
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():99-103. PubMed ID: 33017940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trend Statistics Network and Channel invariant EEG Network for sleep arousal study.
    Rao MVA; Ghosh PK; Bhattacharjee T; Choudhury AD
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5716-5722. PubMed ID: 31947150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.