These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 32556398)

  • 1. Design, application, and microbiome of sulfate-reducing bioreactors for treatment of mining-influenced water.
    Habe H; Sato Y; Aoyagi T; Inaba T; Hori T; Hamai T; Hayashi K; Kobayashi M; Sakata T; Sato N
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6893-6903. PubMed ID: 32556398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Desulfosporosinus spp. were the most predominant sulfate-reducing bacteria in pilot- and laboratory-scale passive bioreactors for acid mine drainage treatment.
    Sato Y; Hamai T; Hori T; Aoyagi T; Inaba T; Kobayashi M; Habe H; Sakata T
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7783-7793. PubMed ID: 31388728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-passive in-situ pilot scale bioreactor successfully removed sulfate and metals from mine impacted water under subarctic climatic conditions.
    Nielsen G; Hatam I; Abuan KA; Janin A; Coudert L; Blais JF; Mercier G; Baldwin SA
    Water Res; 2018 Sep; 140():268-279. PubMed ID: 29723816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous-mode acclimation and operation of lignocellulosic sulfate-reducing bioreactors for enhanced metal immobilization from acidic mining-influenced water.
    Miranda EM; Severson C; Reep JK; Hood D; Hansen S; Santisteban L; Hamdan N; Delgado AG
    J Hazard Mater; 2022 Mar; 425():128054. PubMed ID: 34986575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial impacts of inorganic ligand availability and localized microbial community structure on mitigation of zinc laden mine water in sulfate-reducing bioreactors.
    Drennan DM; Almstrand R; Ladderud J; Lee I; Landkamer L; Figueroa L; Sharp JO
    Water Res; 2017 May; 115():50-59. PubMed ID: 28259814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the efficiency of chitinous and ligneous substrates in metal and sulfate removal from mining-influenced water.
    Pinto PX; Al-Abed SR; McKernan J
    J Environ Manage; 2018 Dec; 227():321-328. PubMed ID: 30199728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction.
    Tabak HH; Govind R
    Biodegradation; 2003 Dec; 14(6):437-52. PubMed ID: 14669874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological treatment of mining wastewaters by fixed-bed bioreactors at high organic loading.
    Bratkova S; Koumanova B; Beschkov V
    Bioresour Technol; 2013 Jun; 137():409-13. PubMed ID: 23611703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs.
    Neculita CM; Zagury GJ; Bussière B
    J Environ Qual; 2007; 36(1):1-16. PubMed ID: 17215207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfate and metals removal from acid mine drainage in a horizontal anaerobic immobilized biomass (HAIB) reactor.
    Braga JK; de Melo Júnior OM; Rodriguez RP; Sancinetti GP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(12):1436-1449. PubMed ID: 32812506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long term performance of an AMD treatment bioreactor using chemolithoautotrophic sulfate reduction and ferrous iron precipitation under in situ groundwater conditions.
    Bilek F; Wagner S
    Bioresour Technol; 2012 Jan; 104():221-7. PubMed ID: 22133606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal start-up conditions for the efficient treatment of acid mine drainage using sulfate-reducing bioreactors based on physicochemical and microbiome analyses.
    Sato Y; Hamai T; Hori T; Aoyagi T; Inaba T; Hayashi K; Kobayashi M; Sakata T; Habe H
    J Hazard Mater; 2022 Feb; 423(Pt B):127089. PubMed ID: 34560478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.
    McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA
    Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms and effectivity of sulfate reducing bioreactors using a chitinous substrate in treating mining influenced water.
    Al-Abed SR; Pinto PX; McKernan J; Feld-Cook E; Lomnicki SM
    Chem Eng J; 2017 Sep; 323():270-277. PubMed ID: 30245579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative effectiveness of mixed organic substrates to mushroom compost for treatment of mine drainage in passive bioreactors.
    Neculita CM; Yim GJ; Lee G; Ji SW; Jung JW; Park HS; Song H
    Chemosphere; 2011 Mar; 83(1):76-82. PubMed ID: 21262523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage.
    Burns AS; Pugh CW; Segid YT; Behum PT; Lefticariu L; Bender KS
    Biodegradation; 2012 Jun; 23(3):415-29. PubMed ID: 22083105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of operating conditions on sulfate reduction from real mining process water by membrane biofilm reactors.
    Suárez JI; Aybar M; Nancucheo I; Poch B; Martínez P; Rittmann BE; Schwarz A
    Chemosphere; 2020 Apr; 244():125508. PubMed ID: 31812042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfidogenic fluidized bed treatment of real acid mine drainage water.
    Sahinkaya E; Gunes FM; Ucar D; Kaksonen AH
    Bioresour Technol; 2011 Jan; 102(2):683-9. PubMed ID: 20832297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitin as a substrate for the biostimulation of sulfate-reducing bacteria in the treatment of mine-impacted water (MIW).
    Rodrigues C; Núñez-Gómez D; Silveira DD; Lapolli FR; Lobo-Recio MA
    J Hazard Mater; 2019 Aug; 375():330-338. PubMed ID: 30826155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metals removal from mine runoff using compost bioreactors.
    Christian D; Wong E; Crawford RL; Cheng IF; Hess TF
    Environ Technol; 2010 Dec; 31(14):1533-46. PubMed ID: 21275250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.