These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32556806)

  • 41. Protein-Observed Fluorine NMR: A Bioorthogonal Approach for Small Molecule Discovery.
    Arntson KE; Pomerantz WC
    J Med Chem; 2016 Jun; 59(11):5158-71. PubMed ID: 26599421
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Practical aspects of NMR-based fragment discovery.
    Zartler ER; Mo H
    Curr Top Med Chem; 2007; 7(16):1592-9. PubMed ID: 17979770
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ligand-Protein Affinity Studies Using Long-Lived States of Fluorine-19 Nuclei.
    Buratto R; Mammoli D; Canet E; Bodenhausen G
    J Med Chem; 2016 Mar; 59(5):1960-6. PubMed ID: 26800391
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protein-observed (19)F-NMR for fragment screening, affinity quantification and druggability assessment.
    Gee CT; Arntson KE; Urick AK; Mishra NK; Hawk LM; Wisniewski AJ; Pomerantz WC
    Nat Protoc; 2016 Aug; 11(8):1414-27. PubMed ID: 27414758
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fast NMR Methods for Measuring in the Direct and/or Competition Mode the Dissociation Constants of Chemical Fragments Interacting with a Receptor.
    Dalvit C; Parent A; Vallée F; Mathieu M; Rak A
    ChemMedChem; 2019 Jun; 14(11):1115-1127. PubMed ID: 30925009
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comprehensive and High-Throughput Exploration of Chemical Space Using Broadband
    Lingel A; Vulpetti A; Reinsperger T; Proudfoot A; Denay R; Frommlet A; Henry C; Hommel U; Gossert AD; Luy B; Frank AO
    Angew Chem Int Ed Engl; 2020 Aug; 59(35):14809-14817. PubMed ID: 32363632
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Paramagnetic NMR in drug discovery.
    Softley CA; Bostock MJ; Popowicz GM; Sattler M
    J Biomol NMR; 2020 Jul; 74(6-7):287-309. PubMed ID: 32524233
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Assessing potential bias in the determination of rotational correlation times of proteins by NMR relaxation.
    Lee AL; Wand AJ
    J Biomol NMR; 1999 Feb; 13(2):101-12. PubMed ID: 10070752
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fast and Efficient Fragment-Based Lead Generation by Fully Automated Processing and Analysis of Ligand-Observed NMR Binding Data.
    Peng C; Frommlet A; Perez M; Cobas C; Blechschmidt A; Dominguez S; Lingel A
    J Med Chem; 2016 Apr; 59(7):3303-10. PubMed ID: 26964888
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of NMR and molecular docking in structure-based drug discovery.
    Stark JL; Powers R
    Top Curr Chem; 2012; 326():1-34. PubMed ID: 21915777
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fluorine-protein interactions and ¹⁹F NMR isotropic chemical shifts: An empirical correlation with implications for drug design.
    Dalvit C; Vulpetti A
    ChemMedChem; 2011 Jan; 6(1):104-14. PubMed ID: 21117131
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ranking Hits From Saturation Transfer Difference Nuclear Magnetic Resonance-Based Fragment Screening.
    Aretz J; Rademacher C
    Front Chem; 2019; 7():215. PubMed ID: 31032246
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Advancing fragment binders to lead-like compounds using ligand and protein-based NMR spectroscopy.
    Maurer T
    Methods Enzymol; 2011; 493():469-85. PubMed ID: 21371602
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polyfluorinated amino acids for sensitive 19F NMR-based screening and kinetic measurements.
    Papeo G; Giordano P; Brasca MG; Buzzo F; Caronni D; Ciprandi F; Mongelli N; Veronesi M; Vulpetti A; Dalvit C
    J Am Chem Soc; 2007 May; 129(17):5665-72. PubMed ID: 17417847
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Process of Fragment-Based Lead Discovery-A Perspective from NMR.
    Ma R; Wang P; Wu J; Ruan K
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27438813
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predicting binding affinity of CSAR ligands using both structure-based and ligand-based approaches.
    Fourches D; Muratov E; Ding F; Dokholyan NV; Tropsha A
    J Chem Inf Model; 2013 Aug; 53(8):1915-22. PubMed ID: 23809015
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential and performance of anisotropic
    Gouilleux B; Moussallieh FM; Lesot P
    Analyst; 2024 May; 149(11):3204-3213. PubMed ID: 38655746
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthetic polymers as biomacromolecular models for studying ligand-protein interactions: a nuclear spin relaxation approach.
    Corbini G; Martini S; Bonechi C; Casolaro M; Corti P; Rossi C
    J Pharm Biomed Anal; 2006 Jan; 40(1):113-21. PubMed ID: 16111852
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fluorine local environment: from screening to drug design.
    Vulpetti A; Dalvit C
    Drug Discov Today; 2012 Aug; 17(15-16):890-7. PubMed ID: 22480871
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 1D NMR WaterLOGSY as an efficient method for fragment-based lead discovery.
    Raingeval C; Cala O; Brion B; Le Borgne M; Hubbard RE; Krimm I
    J Enzyme Inhib Med Chem; 2019 Dec; 34(1):1218-1225. PubMed ID: 31286785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.