BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32557038)

  • 1. Simulation of lead fume emissions in the workplace using computational fluid dynamics in the electronics industry.
    Rahimi Moghadam S; Mohammadyan M; Markani A; Khanjani N; Jalali M
    Environ Sci Pollut Res Int; 2020 Sep; 27(27):34250-34257. PubMed ID: 32557038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The simulation of the emission of iron fumes caused by shielded metal arc welding using a computational fluid dynamics method.
    Paridokht F; Soury S; Karimi Zeverdegani S
    Toxicol Ind Health; 2023 Jan; 39(1):36-48. PubMed ID: 36464906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative and semi-quantitative risk assessment of occupational exposure to lead among electrical solderers in Neyshabur, Iran.
    Mohammadyan M; Moosazadeh M; Khanjani N; Rahimi Moghadam S
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31207-31214. PubMed ID: 31463745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace.
    Keane M; Siert A; Stone S; Chen BT
    J Occup Environ Hyg; 2016; 13(1):1-8. PubMed ID: 26267301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Profiling mild steel welding processes to reduce fume emissions and costs in the workplace.
    Keane MJ; Siert A; Chen BT; Stone SG
    Ann Occup Hyg; 2014 May; 58(4):403-12. PubMed ID: 24515891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of occupational exposure to lead and its relation with blood lead levels in electrical solderers.
    Mohammadyan M; Moosazadeh M; Borji A; Khanjani N; Rahimi Moghadam S
    Environ Monit Assess; 2019 Feb; 191(3):126. PubMed ID: 30715599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Health risk assessment of occupational exposure to styrene in Neyshabur electronic industries.
    Mohammadyan M; Moosazadeh M; Borji A; Khanjani N; Rahimi Moghadam S; Behjati Moghadam AM
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):11920-11927. PubMed ID: 30825126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Total fume and metal concentrations during welding in selected factories in Jeddah, Saudi Arabia.
    Balkhyour MA; Goknil MK
    Int J Environ Res Public Health; 2010 Jul; 7(7):2978-87. PubMed ID: 20717553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of leakage rate of air from a fume hood in a radioisotope laboratory using CFD simulations.
    Kim S; Yang H
    Appl Radiat Isot; 2018 Oct; 140():300-304. PubMed ID: 30099249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collection, validation and generation of bitumen fumes for inhalation studies in rats Part 1: Workplace samples and validation criteria.
    Preiss A; Koch W; Kock H; Elend M; Raabe M; Pohlmann G
    Ann Occup Hyg; 2006 Nov; 50(8):789-804. PubMed ID: 16840433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occupational exposures to styrene vapor in a manufacturing plant for fiber-reinforced composite wind turbine blades.
    Hammond D; Garcia A; Feng HA
    Ann Occup Hyg; 2011 Jul; 55(6):591-600. PubMed ID: 21597049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Status of worker exposure to asphalt paving fumes with the use of engineering controls.
    Mickelsen RL; Shulman SA; Kriech AJ; Osborn LV; Redman AP
    Environ Sci Technol; 2006 Sep; 40(18):5661-7. PubMed ID: 17007123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of welding fume and airborne heavy metals in electronic manufacturing workshops in Hangzhou, China: implication for occupational population exposure.
    Zhang L; Yu JM; Shan XY; Shao J; Ye HP
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):57398-57409. PubMed ID: 36964473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of welding fume impacts in a confined workplace by two extraction patterns - a case study of small-scale manufacturing industries.
    Kuppusamy Vellingiri SK; Manoharan D; Ponnusamy S; Kettimuthu Ramadass U; Dhanabalaselvan V
    Environ Sci Pollut Res Int; 2023 Jan; 30(4):10037-10051. PubMed ID: 36066794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Assessment of occupational exposure of welders based on determination of fumes and their components produced during stainless steel welding].
    Stanisławska M; Janasik B; Trzcinka-Ochocka M
    Med Pr; 2011; 62(4):359-68. PubMed ID: 21995105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carcinogenic risk assessment and changes in Spirometric indices in casting and welding workers exposed to Metal fumes.
    Rahimimoghadam S; Layegh Tizabi MN; Khanjani N; Emkani M; Ganjali A
    Asian Pac J Cancer Prev; 2022 Aug; 23(8):2743-2748. PubMed ID: 36037129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extension of the Advanced REACH Tool (ART) to Include Welding Fume Exposure.
    Sailabaht A; Wang F; Cherrie J
    Int J Environ Res Public Health; 2018 Oct; 15(10):. PubMed ID: 30304799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure to lead and its effect on sleep quality and digestive problems in soldering workers.
    Mohammadyan M; Moosazadeh M; Borji A; Khanjani N; Rahimi Moghadam S
    Environ Monit Assess; 2019 Feb; 191(3):184. PubMed ID: 30805730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exposure to rubber fume and rubber process dust in the general rubber goods, tyre manufacturing and retread industries.
    Dost AA; Redman D; Cox G
    Ann Occup Hyg; 2000 Aug; 44(5):329-42. PubMed ID: 10930497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exposure to rubber process dust and fume since 1970s in the United Kingdom; influence of origin of measurement data.
    Agostini M; de Vocht F; van Tongeren M; Cherrie JW; Galea KS; Kromhout H
    J Environ Monit; 2010 May; 12(5):1170-8. PubMed ID: 21491636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.