These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 32557185)
1. Haemodynamic Effect of Left Atrial and Left Ventricular Cannulation with a Rapid Speed Modulated Rotary Blood Pump During Rest and Exercise: Investigation in a Numerical Cardiorespiratory Model. Wu EL; Fresiello L; Kleinhyer M; Meyns B; Fraser JF; Tansley G; Gregory SD Cardiovasc Eng Technol; 2020 Aug; 11(4):350-361. PubMed ID: 32557185 [TBL] [Abstract][Full Text] [Related]
2. A Starling-like total work controller for rotary blood pumps: An in vitro evaluation. Wu EL; Stevens MC; Nestler F; Pauls JP; Bradley AP; Tansley G; Fraser JF; Gregory SD Artif Organs; 2020 Mar; 44(3):E40-E53. PubMed ID: 31520408 [TBL] [Abstract][Full Text] [Related]
3. Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: a computer-simulation study. Moscato F; Wirrmann C; Granegger M; Eskandary F; Zimpfer D; Schima H J Thorac Cardiovasc Surg; 2013 May; 145(5):1352-8. PubMed ID: 22841169 [TBL] [Abstract][Full Text] [Related]
4. Mitral Valve Regurgitation with a Rotary Left Ventricular Assist Device: The Haemodynamic Effect of Inlet Cannulation Site and Speed Modulation. Gregory SD; Stevens MC; Wu EL; Pauls JP; Kleinheyer M; Fraser JF Ann Biomed Eng; 2016 Sep; 44(9):2674-82. PubMed ID: 26932840 [TBL] [Abstract][Full Text] [Related]
5. Effect of rotary blood pump pulsatility on potential parameters of blood compatibility and thrombosis in inflow cannula tips. Wong KC; Büsen M; Benzinger C; Gäng R; Bezema M; Greatrex N; Schmitz-Rode T; Steinseifer U Int J Artif Organs; 2014 Dec; 37(12):875-87. PubMed ID: 25450321 [TBL] [Abstract][Full Text] [Related]
6. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous-flow left ventricular assistance in an acute porcine left ventricular failure model. Letsou GV; Pate TD; Gohean JR; Kurusz M; Longoria RG; Kaiser L; Smalling RW J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1181-8. PubMed ID: 20546799 [TBL] [Abstract][Full Text] [Related]
7. Rotary pump speed modulation for generating pulsatile flow and phasic left ventricular volume unloading in a bovine model of chronic ischemic heart failure. Soucy KG; Giridharan GA; Choi Y; Sobieski MA; Monreal G; Cheng A; Schumer E; Slaughter MS; Koenig SC J Heart Lung Transplant; 2015 Jan; 34(1):122-131. PubMed ID: 25447573 [TBL] [Abstract][Full Text] [Related]
8. The Influence of Rotary Blood Pump Speed Modulation on the Risk of Intraventricular Thrombosis. Liao S; Wu EL; Neidlin M; Li Z; Simpson B; Gregory SD Artif Organs; 2018 Oct; 42(10):943-953. PubMed ID: 30260033 [TBL] [Abstract][Full Text] [Related]
9. Exercise physiology with a left ventricular assist device: Analysis of heart-pump interaction with a computational simulator. Fresiello L; Rademakers F; Claus P; Ferrari G; Di Molfetta A; Meyns B PLoS One; 2017; 12(7):e0181879. PubMed ID: 28738087 [TBL] [Abstract][Full Text] [Related]
10. A Valveless Pulsatile Pump for the Treatment of Heart Failure with Preserved Ejection Fraction: A Simulation Study. Granegger M; Dave H; Knirsch W; Thamsen B; Schweiger M; Hübler M Cardiovasc Eng Technol; 2019 Mar; 10(1):69-79. PubMed ID: 30536212 [TBL] [Abstract][Full Text] [Related]
11. Autosynchronized systolic unloading during left ventricular assist with a centrifugal pump. Kono S; Nishimura K; Nishina T; Yuasa S; Ueyama K; Hamada C; Akamatsu T; Komeda M J Thorac Cardiovasc Surg; 2003 Feb; 125(2):353-60. PubMed ID: 12579105 [TBL] [Abstract][Full Text] [Related]
12. In vitro hemodynamic characterization of HeartMate II at 6000 rpm: Implications for weaning and recovery. Sunagawa G; Byram N; Karimov JH; Horvath DJ; Moazami N; Starling RC; Fukamachi K J Thorac Cardiovasc Surg; 2015 Aug; 150(2):343-8. PubMed ID: 26204865 [TBL] [Abstract][Full Text] [Related]
14. Hemodynamic modes of ventricular assist with a rotary blood pump: continuous, pulsatile, and failure. Vandenberghe S; Segers P; Antaki JF; Meyns B; Verdonck PR ASAIO J; 2005; 51(6):711-8. PubMed ID: 16340355 [TBL] [Abstract][Full Text] [Related]
15. Influence of left ventricular assist device pressure-flow characteristic on exercise physiology: Assessment with a verified numerical model. Graefe R; Henseler A; Körfer R; Meyns B; Fresiello L Int J Artif Organs; 2019 Sep; 42(9):490-499. PubMed ID: 31104554 [TBL] [Abstract][Full Text] [Related]
16. In-Vitro Evaluation of Cardiac Energetics and Coronary Flow with Volume Displacement and Rotary Blood Pumps. Eric Wu L; Tansley G; John Fraser F; Shaun Gregory D Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5277-5281. PubMed ID: 30441528 [TBL] [Abstract][Full Text] [Related]
17. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps. Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447 [TBL] [Abstract][Full Text] [Related]
18. Effects on the pulmonary hemodynamics and gas exchange with a speed modulated right ventricular assist rotary blood pump: a numerical study. Huang F; Gou Z; Fu Y; Ruan X Biomed Eng Online; 2018 Oct; 17(1):142. PubMed ID: 30342521 [TBL] [Abstract][Full Text] [Related]
19. The hemodynamic effect of the support mode for the intra-aorta pump on the cardiovascular system. Gao B; Chang Y; Xuan Y; Zeng Y; Liu Y Artif Organs; 2013 Feb; 37(2):157-65. PubMed ID: 23379287 [TBL] [Abstract][Full Text] [Related]
20. Anatomy and Physiology of Left Ventricular Suction Induced by Rotary Blood Pumps. Salamonsen RF; Lim E; Moloney J; Lovell NH; Rosenfeldt FL Artif Organs; 2015 Aug; 39(8):681-90. PubMed ID: 26146861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]