These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 3255734)

  • 1. Stabilization of stannous pyrophosphate kits with gentisic acid.
    Ballinger JR; Pygas J; Gerson B; Gulenchyn KY
    Int J Rad Appl Instrum B; 1988; 15(4):391-3. PubMed ID: 3255734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo labelling of RBC with 99mTc for blood pool imaging using different stannous radiopharmaceuticals.
    Popescu HI; Lessem J; Erjavec M; Füger GF
    Eur J Nucl Med; 1984; 9(7):295-9. PubMed ID: 6088238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical problems associated with the production of technetium Tc 99m tin(II) pyrophosphate kits.
    Kowalsky RJ; Dalton DR
    Am J Hosp Pharm; 1981 Nov; 38(11):1722-6. PubMed ID: 7304626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red blood cell labeling technique using a commercial stannous kit: comparison with 51chromium.
    Biggi A; Gallamini A; Viglietti AL; Balbo R; Cavallero G; Menardi G; Ferrero E; D'Angeli B
    Eur J Haematol; 1990 May; 44(5):317-8. PubMed ID: 2164487
    [No Abstract]   [Full Text] [Related]  

  • 5. Re: Stability of stannous ion in stannous pyrophosphate kits.
    Kowalsky RJ; Chilton HM
    J Nucl Med; 1983 Nov; 24(11):1080-1. PubMed ID: 6631529
    [No Abstract]   [Full Text] [Related]  

  • 6. Stabilization of 99mTc-pyrophosphate injection with gentisic acid.
    Ballinger J; Der M; Bowen B
    Eur J Nucl Med; 1981 Apr; 6(4):153-4. PubMed ID: 6260499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deterioration of stannous ion in radiopharmaceutical kits during storage.
    McBride MH; Shaw SM; Kessler WV
    Am J Hosp Pharm; 1979 Oct; 36(10):1370-2. PubMed ID: 507080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic aspects of the interaction of 99mTc in association with stannous pyrophosphate with damaged red blood cells.
    Billinghurst MW; Waddell TL
    Int J Appl Radiat Isot; 1983 Mar; 34(3):607-12. PubMed ID: 6303965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifying effect of commercially available stannous pyrophosphate (PYRO-Sn) on the tissue affinity of 99mTc pertechnetate.
    Bałtrukiewicz Z; Przedlacki J; Dziuk E
    Eur J Nucl Med; 1980; 5(1):45-7. PubMed ID: 7379805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Sn(II) ion concentration and heparin on technetium-99m red blood cell labeling.
    Rao SA; Knobel J; Collier BD; Isitman AT
    J Nucl Med; 1986 Jul; 27(7):1202-6. PubMed ID: 3014088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Failure in labelling of red blood cells with 99mTc: interaction between intravenous cannulae and stannous pyrophosphate.
    Millar AM; Wathen CG; Muir AL
    Eur J Nucl Med; 1983; 8(11):502-4. PubMed ID: 6317393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the optimal concentrations of stannous pyrophosphate for in vivo red blood cell labelling with technetium-99m.
    Billinghurst MW; Jette D; Greenberg D
    Int J Appl Radiat Isot; 1980 Aug; 31(8):499-504. PubMed ID: 7450914
    [No Abstract]   [Full Text] [Related]  

  • 13. In vivo labeling of red blood cells with Tc-99m with stannous pyridoxylideneaminates.
    Kato M
    J Nucl Med; 1979 Oct; 20(10):1071-4. PubMed ID: 536758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro technetium-99m red blood cell labeling using commercial stannous pyrophosphate.
    Zimmer AM
    Am J Hosp Pharm; 1977 Mar; 34(3):264-7. PubMed ID: 857670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric determination of tin(II) levels in 99mTc labelling kits.
    Vyth A
    Pharm Weekbl Sci; 1982 Jun; 4(3):79-82. PubMed ID: 7110910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early positive technetium-99m stannous pyrophosphate images as a marker of reperfusion after thrombolytic therapy for acute myocardial infarction.
    Wheelan K; Wolfe C; Corbett J; Rude RE; Winniford M; Parkey RW; Buja LM; Willerson JT
    Am J Cardiol; 1985 Aug; 56(4):252-6. PubMed ID: 4025161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of technetium-99m pyrophosphate and technetium-99m methylene diphosphonate with variable amounts of stannous chloride in the detection of acute myocardial infarction.
    Huckell VF; Lyster DM; Morrison RT; Cooper JA
    Clin Nucl Med; 1985 Jul; 10(7):455-62. PubMed ID: 4028596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Bayesian analysis of myocardial scintigraphy using 99mTc-Sn(II)-methylenediphosphonate and using 99mTc-Sn(II)-pyrophosphate].
    Cuarón A; Acero A; Cárdenas M
    Arch Inst Cardiol Mex; 1982; 52(5):365-72. PubMed ID: 7149857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Survival of red blood cells in rabbits after acute administration of unlabeled stannous pyrophosphate: Concise communication.
    Kmet JP; Gerber FH; Raflo CP
    J Nucl Med; 1979 Apr; 20(4):294-6. PubMed ID: 536806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 99mTc bone scanning agents--II. Adsorption of 99mTc(Sn)pyrophosphate complexes on the mineral phase of bone.
    Kroesbergen J; van Steijn AM; Gelsema WJ; de Ligny CL
    Int J Nucl Med Biol; 1986; 12(6):411-7. PubMed ID: 3011692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.