These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 32557603)

  • 1. Sex-specific effects of wind on the flight decisions of a sexually dimorphic soaring bird.
    Clay TA; Joo R; Weimerskirch H; Phillips RA; den Ouden O; Basille M; Clusella-Trullas S; Assink JD; Patrick SC
    J Anim Ecol; 2020 Aug; 89(8):1811-1823. PubMed ID: 32557603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wandering albatrosses exert high take-off effort only when both wind and waves are gentle.
    Uesaka L; Goto Y; Naruoka M; Weimerskirch H; Sato K; Sakamoto KQ
    Elife; 2023 Oct; 12():. PubMed ID: 37814539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flight speed and performance of the wandering albatross with respect to wind.
    Richardson PL; Wakefield ED; Phillips RA
    Mov Ecol; 2018; 6():3. PubMed ID: 29556395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast and fuel efficient? Optimal use of wind by flying albatrosses.
    Weimerskirch H; Guionnet T; Martin J; Shaffer SA; Costa DP
    Proc Biol Sci; 2000 Sep; 267(1455):1869-74. PubMed ID: 11052538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boldness predicts plasticity in flight responses to winds.
    Gillies N; Weimerskirch H; Thorley J; Clay TA; Martín López LM; Joo R; Basille M; Patrick SC
    J Anim Ecol; 2023 Sep; 92(9):1730-1742. PubMed ID: 37365766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flight dynamics of Cory's shearwater foraging in a coastal environment.
    Paiva VH; Guilford T; Meade J; Geraldes P; Ramos JA; Garthe S
    Zoology (Jena); 2010 Jan; 113(1):47-56. PubMed ID: 20060697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive effects of body mass changes and species-specific morphology on flight behavior of chick-rearing Antarctic fulmarine petrels under diurnal wind patterns.
    Dehnhard N; Klekociuk AR; Emmerson L
    Ecol Evol; 2021 May; 11(9):4972-4991. PubMed ID: 33976863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seabird morphology determines operational wind speeds, tolerable maxima, and responses to extremes.
    Nourani E; Safi K; de Grissac S; Anderson DJ; Cole NC; Fell A; Grémillet D; Lempidakis E; Lerma M; McKee JL; Pichegru L; Provost P; Rattenborg NC; Ryan PG; Santos CD; Schoombie S; Tatayah V; Weimerskirch H; Wikelski M; Shepard ELC
    Curr Biol; 2023 Mar; 33(6):1179-1184.e3. PubMed ID: 36827987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observations and models of across-wind flight speed of the wandering albatross.
    Richardson PL; Wakefield ED
    R Soc Open Sci; 2022 Nov; 9(11):211364. PubMed ID: 36465680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gadfly petrels use knowledge of the windscape, not memorized foraging patches, to optimize foraging trips on ocean-wide scales.
    Ventura F; Granadeiro JP; Padget O; Catry P
    Proc Biol Sci; 2020 Jan; 287(1918):20191775. PubMed ID: 31937218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird.
    Gibb R; Shoji A; Fayet AL; Perrins CM; Guilford T; Freeman R
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28701505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasting responses of male and female foraging effort to year-round wind conditions.
    Lewis S; Phillips RA; Burthe SJ; Wanless S; Daunt F
    J Anim Ecol; 2015 Nov; 84(6):1490-6. PubMed ID: 26283625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental verification of dynamic soaring in albatrosses.
    Sachs G; Traugott J; Nesterova AP; Bonadonna F
    J Exp Biol; 2013 Nov; 216(Pt 22):4222-32. PubMed ID: 24172888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wind, waves, and wing loading: morphological specialization may limit range expansion of endangered albatrosses.
    Suryan RM; Anderson DJ; Shaffer SA; Roby DD; Tremblay Y; Costa DP; Sievert PR; Sato F; Ozaki K; Balogh GR; Nakamura N
    PLoS One; 2008; 3(12):e4016. PubMed ID: 19107200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Albatrosses employ orientation and routing strategies similar to yacht racers.
    Goto Y; Weimerskirch H; Fukaya K; Yoda K; Naruoka M; Sato K
    Proc Natl Acad Sci U S A; 2024 Jun; 121(23):e2312851121. PubMed ID: 38771864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seasonal sexual segregation in two Thalassarche albatross species: competitive exclusion, reproductive role specialization or foraging niche divergence?
    Phillips RA; Silk JR; Phalan B; Catry P; Croxall JP
    Proc Biol Sci; 2004 Jun; 271(1545):1283-91. PubMed ID: 15306353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Windscape and tortuosity shape the flight costs of northern gannets.
    Amélineau F; Péron C; Lescroël A; Authier M; Provost P; Grémillet D
    J Exp Biol; 2014 Mar; 217(Pt 6):876-85. PubMed ID: 24622894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. European shags optimize their flight behavior according to wind conditions.
    Kogure Y; Sato K; Watanuki Y; Wanless S; Daunt F
    J Exp Biol; 2016 Feb; 219(Pt 3):311-8. PubMed ID: 26847559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial segregation in a sexually dimorphic central place forager: Competitive exclusion or niche divergence?
    Orgeret F; Reisinger RR; Carpenter-Kling T; Keys DZ; Corbeau A; Bost CA; Weimerskirch H; Pistorius PA
    J Anim Ecol; 2021 Oct; 90(10):2404-2420. PubMed ID: 34091891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex-specific foraging behaviour in a seabird with reversed sexual dimorphism: the red-footed booby.
    Weimerskirch H; Le Corre M; Ropert-Coudert Y; Kato A; Marsac F
    Oecologia; 2006 Jan; 146(4):681-91. PubMed ID: 16195880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.