BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32557750)

  • 21. Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus.
    Kim BM; Rhee JS; Jeong CB; Seo JS; Park GS; Lee YM; Lee JS
    Comp Biochem Physiol C Toxicol Pharmacol; 2014 Nov; 166():65-74. PubMed ID: 25058597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predation risk alters life history strategies in an oceanic copepod.
    Kvile KØ; Altin D; Thommesen L; Titelman J
    Ecology; 2021 Jan; 102(1):e03214. PubMed ID: 33001438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deriving a Chronic Guideline Value for Nickel in Tropical and Temperate Marine Waters.
    Gissi F; Wang Z; Batley GE; Leung KMY; Schlekat CE; Garman ER; Stauber JL
    Environ Toxicol Chem; 2020 Dec; 39(12):2540-2551. PubMed ID: 32955772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acclimation and adaptation to common marine pollutants in the copepod Tigriopus californicus.
    Sun PY; Foley HB; Handschumacher L; Suzuki A; Karamanukyan T; Edmands S
    Chemosphere; 2014 Oct; 112():465-71. PubMed ID: 25048941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the Efficacy of a Sediment Remediation Program Using Benthic and Pelagic Copepod Bioassays.
    Charry MP; Keesing V; Gaw S; Costello MJ; Champeau O; Tremblay LA
    Environ Toxicol Chem; 2020 Feb; 39(2):492-499. PubMed ID: 31692086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential of the small cyclopoid copepod Paracyclopina nana as an invertebrate model for ecotoxicity testing.
    Dahms HU; Won EJ; Kim HS; Han J; Park HG; Souissi S; Raisuddin S; Lee JS
    Aquat Toxicol; 2016 Nov; 180():282-294. PubMed ID: 27770640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variation in tolerance to common marine pollutants among different populations in two species of the marine copepod Tigriopus.
    Sun PY; Foley HB; Bao VW; Leung KM; Edmands S
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):16143-52. PubMed ID: 26070741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insoluble detoxification of trace metals in a marine copepod Tigriopus brevicornis (Müller) exposed to copper, zinc, nickel, cadmium, silver and mercury.
    Barka S
    Ecotoxicology; 2007 Oct; 16(7):491-502. PubMed ID: 17629789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of copper on olfactory, behavioral, and other sublethal responses of saltwater organisms: Are estimated chronic limits using the biotic ligand model protective?
    DeForest DK; Gensemer RW; Gorsuch JW; Meyer JS; Santore RC; Shephard BK; Zodrow JM
    Environ Toxicol Chem; 2018 Jun; 37(6):1515-1522. PubMed ID: 29442368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increased sensitivity of subantarctic marine invertebrates to copper under a changing climate - Effects of salinity and temperature.
    Holan JR; King CK; Proctor AH; Davis AR
    Environ Pollut; 2019 Jun; 249():54-62. PubMed ID: 30878862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ecotoxicological and biochemical mixture effects of an herbicide and a metal at the marine primary producer diatom Thalassiosira weissflogii and the primary consumer copepod Acartia tonsa.
    Filimonova V; Nys C; De Schamphelaere KAC; Gonçalves F; Marques JC; Gonçalves AMM; De Troch M
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):22180-22195. PubMed ID: 29804247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-term laboratory culture causes contrasting shifts in tolerance to two marine pollutants in copepods of the genus Tigriopus.
    Sun PY; Foley HB; Wu L; Nguyen C; Chaudhry S; Bao VWW; Leung KMY; Edmands S
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3183-3192. PubMed ID: 29019110
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web.
    Barka S; Pavillon JF; Amiard-Triquet C
    Environ Toxicol; 2010 Aug; 25(4):350-60. PubMed ID: 19449389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Passive dosing of triclosan in multigeneration tests with copepods - stable exposure concentrations and effects at the low μg/L range.
    Ribbenstedt A; Mustajärvi L; Breitholtz M; Gorokhova E; Mayer P; Sobek A
    Environ Toxicol Chem; 2017 May; 36(5):1254-1260. PubMed ID: 27731510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chronic copper toxicity in the estuarine copepod Acartia tonsa at different salinities.
    Lauer MM; Bianchini A
    Environ Toxicol Chem; 2010 Oct; 29(10):2297-303. PubMed ID: 20872694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Updated Chronic Copper Bioavailability Models for Invertebrates and Algae.
    Nys C; Van Sprang P; Lofts S; Baken S; Delbeke K; De Schamphelaere K
    Environ Toxicol Chem; 2024 Feb; 43(2):450-467. PubMed ID: 38018744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differences in lethal response between male and female calanoid copepods and life cycle traits to cadmium toxicity.
    Kadiene EU; Bialais C; Ouddane B; Hwang JS; Souissi S
    Ecotoxicology; 2017 Nov; 26(9):1227-1239. PubMed ID: 28990129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactive effects of extreme temperature and a widespread coastal metal contaminant reduce the fitness of a common tropical copepod across generations.
    Dinh KV; Nguyen QTT; Vo TM; Bui TB; Dao TS; Tran DM; Doan NX; Truong TSH; Wisz MS; Nielsen TG; Vu MTT; Le MH
    Mar Pollut Bull; 2020 Oct; 159():111509. PubMed ID: 32763562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions of copper and thermal stress on mitochondrial bioenergetics in rainbow trout, Oncorhynchus mykiss.
    Sappal R; MacDonald N; Fast M; Stevens D; Kibenge F; Siah A; Kamunde C
    Aquat Toxicol; 2014 Dec; 157():10-20. PubMed ID: 25310891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fear and loathing in the benthos: Responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk.
    Pestana JL; Loureiro S; Baird DJ; Soares AM
    Aquat Toxicol; 2009 Jun; 93(2-3):138-49. PubMed ID: 19477535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.