These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32557860)

  • 1. Core-Shell Structured Nanoenergetic Materials: Preparation and Fundamental Properties.
    Ma X; Li Y; Hussain I; Shen R; Yang G; Zhang K
    Adv Mater; 2020 Jul; 32(30):e2001291. PubMed ID: 32557860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Art of Framework Construction: Core-Shell Structured Micro-Energetic Materials.
    Duan B; Li J; Mo H; Lu X; Xu M; Wang B; Liu N
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Reactive Metastable Intermixed Composites (MICs): Preparation and Characterization.
    He W; Liu PJ; He GQ; Gozin M; Yan QL
    Adv Mater; 2018 Oct; 30(41):e1706293. PubMed ID: 29862580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoenergetic Composites with Fluoropolymers: Transition from Powders to Structures.
    Pisharath S; Ong YJ; Hng HH
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Nano-Sized Energetic Materials (nEMs) on the Performance of Solid Propellants: A Review.
    Pang W; Deng C; Li H; DeLuca LT; Ouyang D; Xu H; Fan X
    Nanomaterials (Basel); 2021 Dec; 12(1):. PubMed ID: 35010082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of quasi-core/shell structured composite energetic materials to improve combustion performance.
    Wang R; Yang L; Zhang Z; Song W; Wang D; Guo C
    RSC Adv; 2023 Jun; 13(26):17834-17841. PubMed ID: 37323446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Reactive Thermite Energetic Materials: Preparation, Characterization, and Applications: A Review.
    Guo X; Liang T; Islam ML; Chen X; Wang Z
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Combustion Properties of Nanoscale Aluminum and Its Energetic Composites: A Short Review.
    Patel VK; Joshi A; Kumar S; Rathaur AS; Katiyar JK
    ACS Omega; 2021 Jan; 6(1):17-27. PubMed ID: 33458455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tuning the Reactivity of Al/NiO@C Nanoenergetic Materials through Building an Interfacial Carbon Barrier Layer.
    Ke X; Gou B; Liu X; Wang N; Hao G; Xiao L; Zhou X; Jiang W
    ACS Appl Mater Interfaces; 2019 Sep; 11(38):35394-35403. PubMed ID: 31474107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Additive Manufacturing and Combustion Characteristics of Polyethylene Oxide/Aluminum/Copper Oxide-Based Energetic Nanocomposites for Enhancing the Propulsion of Small Projectiles.
    Kim HS; Kim SH
    Nanomaterials (Basel); 2023 Mar; 13(6):. PubMed ID: 36985946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile green in situ synthesis of Mg/CuO core/shell nanoenergetic arrays with a superior heat-release property and long-term storage stability.
    Zhou X; Xu D; Zhang Q; Lu J; Zhang K
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7641-6. PubMed ID: 23869818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanostructured energetic composites: synthesis, ignition/combustion modeling, and applications.
    Zhou X; Torabi M; Lu J; Shen R; Zhang K
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3058-74. PubMed ID: 24552204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetic Salts Based on Tetrazole N-Oxide.
    He P; Zhang JG; Yin X; Wu JT; Wu L; Zhou ZN; Zhang TL
    Chemistry; 2016 Jun; 22(23):7670-85. PubMed ID: 27061423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Flexible and Patternable Multiwalled-Carbon Nanotube/Nitrocellulose Hybrid Conducting Paper Electrodes as Heating Platforms for Effective Ignition of Nanoenergetic Materials.
    Kim H; Cha JK; Kim J; Kim SH
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28586-28595. PubMed ID: 32469501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core-shell structured titanium dioxide nanomaterials for solar energy utilization.
    Li W; Elzatahry A; Aldhayan D; Zhao D
    Chem Soc Rev; 2018 Nov; 47(22):8203-8237. PubMed ID: 30137079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elaboration, Characterization and Thermal Decomposition Kinetics of New Nanoenergetic Composite Based on Hydrazine 3-Nitro-1,2,4-triazol-5-one and Nanostructured Cellulose Nitrate.
    Tarchoun AF; Trache D; Abdelaziz A; Harrat A; Boukecha WO; Hamouche MA; Boukeciat H; Dourari M
    Molecules; 2022 Oct; 27(20):. PubMed ID: 36296538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spherical Mesoporous Materials from Single to Multilevel Architectures.
    Qiu P; Ma B; Hung CT; Li W; Zhao D
    Acc Chem Res; 2019 Oct; 52(10):2928-2938. PubMed ID: 31536332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core@Double-Shell Structured Energetic Composites with Reduced Sensitivity and Enhanced Mechanical Properties.
    Lin C; Huang B; Gong F; Yang Z; Liu J; Zhang J; Zeng C; Li Y; Li J; Guo S
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30341-30351. PubMed ID: 31356045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.
    Li JF; Zhang YJ; Ding SY; Panneerselvam R; Tian ZQ
    Chem Rev; 2017 Apr; 117(7):5002-5069. PubMed ID: 28271881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-Shell Structured Micro-Nanomotors: Construction, Shell Functionalization, Applications, and Perspectives.
    Yan M; Liang K; Zhao D; Kong B
    Small; 2022 Jan; 18(3):e2102887. PubMed ID: 34611979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.