These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 32558092)
1. Similarities and differences for membranotropic action of three unnatural antimicrobial peptides. Oliva R; Chino M; Lombardi A; Nastri F; Notomista E; Petraccone L; Del Vecchio P J Pept Sci; 2020 Aug; 26(8):e3270. PubMed ID: 32558092 [TBL] [Abstract][Full Text] [Related]
2. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
3. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Thennarasu S; Tan A; Penumatchu R; Shelburne CE; Heyl DL; Ramamoorthy A Biophys J; 2010 Jan; 98(2):248-57. PubMed ID: 20338846 [TBL] [Abstract][Full Text] [Related]
4. Antimicrobial properties and interaction of two Trp-substituted cationic antimicrobial peptides with a lipid bilayer. Bi X; Wang C; Dong W; Zhu W; Shang D J Antibiot (Tokyo); 2014 May; 67(5):361-8. PubMed ID: 24496141 [TBL] [Abstract][Full Text] [Related]
5. The introduction of L-phenylalanine into antimicrobial peptide protonectin enhances the selective antibacterial activity of its derivative phe-Prt against Gram-positive bacteria. Peng J; Qiu S; Jia F; Zhang L; He Y; Zhang F; Sun M; Deng Y; Guo Y; Xu Z; Liang X; Yan W; Wang K Amino Acids; 2021 Jan; 53(1):23-32. PubMed ID: 33236256 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
7. Coevolution of Resistance Against Antimicrobial Peptides. Baindara P; Ghosh AK; Mandal SM Microb Drug Resist; 2020 Aug; 26(8):880-899. PubMed ID: 32119634 [TBL] [Abstract][Full Text] [Related]
8. Effects of Aib residues insertion on the structural-functional properties of the frog skin-derived peptide esculentin-1a(1-21)NH Biondi B; Casciaro B; Di Grazia A; Cappiello F; Luca V; Crisma M; Mangoni ML Amino Acids; 2017 Jan; 49(1):139-150. PubMed ID: 27726008 [TBL] [Abstract][Full Text] [Related]
9. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components. Savini F; Loffredo MR; Troiano C; Bobone S; Malanovic N; Eichmann TO; Caprio L; Canale VC; Park Y; Mangoni ML; Stella L Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183291. PubMed ID: 32234322 [TBL] [Abstract][Full Text] [Related]
10. Role of amino acid residues within the disulfide loop of thanatin, a potent antibiotic peptide. Lee MK; Cha L; Lee SH; Hahm KS J Biochem Mol Biol; 2002 May; 35(3):291-6. PubMed ID: 12297012 [TBL] [Abstract][Full Text] [Related]
11. Rational Design of Helix-Stabilized Antimicrobial Peptide Foldamers Containing α,α-Disubstituted Amino Acids or Side-Chain Stapling. Hirano M; Saito C; Goto C; Yokoo H; Kawano R; Misawa T; Demizu Y Chempluschem; 2020 Dec; 85(12):2731-2736. PubMed ID: 33369262 [TBL] [Abstract][Full Text] [Related]
12. Cationic hydrophobic peptides with antimicrobial activity. Stark M; Liu LP; Deber CM Antimicrob Agents Chemother; 2002 Nov; 46(11):3585-90. PubMed ID: 12384369 [TBL] [Abstract][Full Text] [Related]
13. Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Torcato IM; Huang YH; Franquelim HG; Gaspar D; Craik DJ; Castanho MA; Troeira Henriques S Biochim Biophys Acta; 2013 Mar; 1828(3):944-55. PubMed ID: 23246973 [TBL] [Abstract][Full Text] [Related]
14. Unravelling the mechanism of action of "de novo" designed peptide P1 with model membranes and gram-positive and gram-negative bacteria. Espeche JC; Martínez M; Maturana P; Cutró A; Semorile L; Maffia PC; Hollmann A Arch Biochem Biophys; 2020 Oct; 693():108549. PubMed ID: 32828795 [TBL] [Abstract][Full Text] [Related]
15. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens. Romani AA; Baroni MC; Taddei S; Ghidini F; Sansoni P; Cavirani S; Cabassi CS J Pept Sci; 2013 Sep; 19(9):554-65. PubMed ID: 23893489 [TBL] [Abstract][Full Text] [Related]
16. The effects of LPS on the activity of Trp-containing antimicrobial peptides against Gram-negative bacteria and endotoxin neutralization. Shang D; Zhang Q; Dong W; Liang H; Bi X Acta Biomater; 2016 Mar; 33():153-65. PubMed ID: 26804205 [TBL] [Abstract][Full Text] [Related]
17. Structure-activity relationships of de novo designed cyclic antimicrobial peptides based on gramicidin S. Lee DL; Hodges RS Biopolymers; 2003; 71(1):28-48. PubMed ID: 12712499 [TBL] [Abstract][Full Text] [Related]
18. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Chou HT; Kuo TY; Chiang JC; Pei MJ; Yang WT; Yu HC; Lin SB; Chen WJ Int J Antimicrob Agents; 2008 Aug; 32(2):130-8. PubMed ID: 18586467 [TBL] [Abstract][Full Text] [Related]
19. Modulation of structure and antibacterial and hemolytic activity by ring size in cyclic gramicidin S analogs. Kondejewski LH; Farmer SW; Wishart DS; Kay CM; Hancock RE; Hodges RS J Biol Chem; 1996 Oct; 271(41):25261-8. PubMed ID: 8810288 [TBL] [Abstract][Full Text] [Related]
20. Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. Zhang L; Benz R; Hancock RE Biochemistry; 1999 Jun; 38(25):8102-11. PubMed ID: 10387056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]