These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 32558098)
1. CRISPR with a Happy Ending: Non-Templated DNA Repair for Prokaryotic Genome Engineering. Finger-Bou M; Orsi E; van der Oost J; Staals RHJ Biotechnol J; 2020 Jul; 15(7):e1900404. PubMed ID: 32558098 [TBL] [Abstract][Full Text] [Related]
2. Strategies for Applying Nonhomologous End Joining-Mediated Genome Editing in Prokaryotes. Cui Y; Dong H; Ma Y; Zhang D ACS Synth Biol; 2019 Oct; 8(10):2194-2202. PubMed ID: 31525995 [TBL] [Abstract][Full Text] [Related]
3. A CRISPR-Cas9 Assisted Non-Homologous End-Joining Strategy for One-step Engineering of Bacterial Genome. Su T; Liu F; Gu P; Jin H; Chang Y; Wang Q; Liang Q; Qi Q Sci Rep; 2016 Nov; 6():37895. PubMed ID: 27883076 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria. Bernheim A; Calvo-Villamañán A; Basier C; Cui L; Rocha EPC; Touchon M; Bikard D Nat Commun; 2017 Dec; 8(1):2094. PubMed ID: 29234047 [TBL] [Abstract][Full Text] [Related]
5. Gene Editing With TALEN and CRISPR/Cas in Rice. Bi H; Yang B Prog Mol Biol Transl Sci; 2017; 149():81-98. PubMed ID: 28712502 [TBL] [Abstract][Full Text] [Related]
6. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517 [TBL] [Abstract][Full Text] [Related]
7. Quantitative assessment of HR and NHEJ activities via CRISPR/Cas9-induced oligodeoxynucleotide-mediated DSB repair. Du J; Yin N; Xie T; Zheng Y; Xia N; Shang J; Chen F; Zhang H; Yu J; Liu F DNA Repair (Amst); 2018 Oct; 70():67-71. PubMed ID: 30212742 [TBL] [Abstract][Full Text] [Related]
8. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis. Yan MY; Li SS; Ding XY; Guo XP; Jin Q; Sun YC mBio; 2020 Jan; 11(1):. PubMed ID: 31992616 [TBL] [Abstract][Full Text] [Related]
9. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Maruyama T; Dougan SK; Truttmann MC; Bilate AM; Ingram JR; Ploegh HL Nat Biotechnol; 2015 May; 33(5):538-42. PubMed ID: 25798939 [TBL] [Abstract][Full Text] [Related]
10. CRISPR/Cas-based precision genome editing via microhomology-mediated end joining. Van Vu T; Thi Hai Doan D; Kim J; Sung YW; Thi Tran M; Song YJ; Das S; Kim JY Plant Biotechnol J; 2021 Feb; 19(2):230-239. PubMed ID: 33047464 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548 [TBL] [Abstract][Full Text] [Related]
13. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. Jasin M; Haber JE DNA Repair (Amst); 2016 Aug; 44():6-16. PubMed ID: 27261202 [TBL] [Abstract][Full Text] [Related]
14. CRISPR-mediated host genomic DNA damage is efficiently repaired through microhomology-mediated end joining in Zymomonas mobilis. Wang X; Wu B; Sui X; Zhang Z; Liu T; Li Y; Hu G; He M; Peng N J Genet Genomics; 2021 Feb; 48(2):115-122. PubMed ID: 33958317 [TBL] [Abstract][Full Text] [Related]
16. CRISPR-Cas9-assisted native end-joining editing offers a simple strategy for efficient genetic engineering in Escherichia coli. Huang C; Ding T; Wang J; Wang X; Guo L; Wang J; Zhu L; Bi C; Zhang X; Ma X; Huo YX Appl Microbiol Biotechnol; 2019 Oct; 103(20):8497-8509. PubMed ID: 31501938 [TBL] [Abstract][Full Text] [Related]
17. Generation of genomic deletions in mammalian cell lines via CRISPR/Cas9. Bauer DE; Canver MC; Orkin SH J Vis Exp; 2015 Jan; (95):e52118. PubMed ID: 25549070 [TBL] [Abstract][Full Text] [Related]
18. Single-Strand Annealing Plays a Major Role in Double-Strand DNA Break Repair following CRISPR-Cas9 Cleavage in Zhang WW; Matlashewski G mSphere; 2019 Aug; 4(4):. PubMed ID: 31434745 [TBL] [Abstract][Full Text] [Related]
19. [CRISPR/Cas system for genome editing in pluripotent stem cells]. Vasil'eva EA; Melino D; Barlev NA Tsitologiia; 2015; 57(1):19-30. PubMed ID: 25872372 [TBL] [Abstract][Full Text] [Related]
20. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks. Brinkman EK; Chen T; de Haas M; Holland HA; Akhtar W; van Steensel B Mol Cell; 2018 Jun; 70(5):801-813.e6. PubMed ID: 29804829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]