These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 32558222)
1. Genome-wide association study identifies CDH13 as a susceptibility gene for rhododendrol-induced leukoderma. Okamura K; Abe Y; Naka I; Ohashi J; Yagami A; Matsunaga K; Kobayashi Y; Fukai K; Tanemura A; Katayama I; Masui Y; Ito A; Yamashita T; Nagai H; Nishigori C; Oiso N; Aoyama Y; Araki Y; Saito T; Hayashi M; Hozumi Y; Suzuki T Pigment Cell Melanoma Res; 2020 Nov; 33(6):826-833. PubMed ID: 32558222 [TBL] [Abstract][Full Text] [Related]
2. Leukoderma induced by rhododendrol is different from leukoderma of vitiligo in pathogenesis: A novel comparative morphological study. Tsutsumi R; Sugita K; Abe Y; Hozumi Y; Suzuki T; Yamada N; Yoshida Y; Yamamoto O J Cutan Pathol; 2019 Feb; 46(2):123-129. PubMed ID: 30456919 [TBL] [Abstract][Full Text] [Related]
3. Rhododenol-induced leukoderma in a mouse model mimicking Japanese skin. Abe Y; Okamura K; Kawaguchi M; Hozumi Y; Aoki H; Kunisada T; Ito S; Wakamatsu K; Matsunaga K; Suzuki T J Dermatol Sci; 2016 Jan; 81(1):35-43. PubMed ID: 26547111 [TBL] [Abstract][Full Text] [Related]
4. Biochemical, cytological, and immunological mechanisms of rhododendrol-induced leukoderma. Tokura Y; Fujiyama T; Ikeya S; Tatsuno K; Aoshima M; Kasuya A; Ito T J Dermatol Sci; 2015 Mar; 77(3):146-9. PubMed ID: 25726326 [TBL] [Abstract][Full Text] [Related]
5. Expression of discoidin domain receptor 1 and E-cadherin in epidermis affects melanocyte behavior in rhododendrol-induced leukoderma mouse model. Abe Y; Hozumi Y; Okamura K; Suzuki T J Dermatol; 2020 Nov; 47(11):1330-1334. PubMed ID: 32770866 [TBL] [Abstract][Full Text] [Related]
6. An immune pathological and ultrastructural skin analysis for rhododenol-induced leukoderma patients. Tanemura A; Yang L; Yang F; Nagata Y; Wataya-Kaneda M; Fukai K; Tsuruta D; Ohe R; Yamakawa M; Suzuki T; Katayama I J Dermatol Sci; 2015 Mar; 77(3):185-8. PubMed ID: 25676426 [TBL] [Abstract][Full Text] [Related]
7. Rhododendrol-induced leukoderma update II: Pathophysiology, mechanisms, risk evaluation, and possible mechanism-based treatments in comparison with vitiligo. Inoue S; Katayama I; Suzuki T; Tanemura A; Ito S; Abe Y; Sumikawa Y; Yoshikawa M; Suzuki K; Yagami A; Masui Y; Ito A; Matsunaga K J Dermatol; 2021 Jul; 48(7):969-978. PubMed ID: 33951216 [TBL] [Abstract][Full Text] [Related]
8. Clinical and epidemiological analysis in 149 cases of rhododendrol-induced leukoderma. Yoshikawa M; Sumikawa Y; Hida T; Kamiya T; Kase K; Ishii-Osai Y; Kato J; Kan Y; Kamiya S; Sato Y; Yamashita T J Dermatol; 2017 May; 44(5):582-587. PubMed ID: 27882588 [TBL] [Abstract][Full Text] [Related]
9. Rhododendrol, a depigmentation-inducing phenolic compound, exerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism. Sasaki M; Kondo M; Sato K; Umeda M; Kawabata K; Takahashi Y; Suzuki T; Matsunaga K; Inoue S Pigment Cell Melanoma Res; 2014 Sep; 27(5):754-63. PubMed ID: 24890809 [TBL] [Abstract][Full Text] [Related]
10. Biochemical Mechanism of Rhododendrol-Induced Leukoderma. Ito S; Wakamatsu K Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29439519 [No Abstract] [Full Text] [Related]
11. Substantial evidence for the rhododendrol-induced generation of hydroxyl radicals that causes melanocyte cytotoxicity and induces chemical leukoderma. Gabe Y; Miyaji A; Kohno M; Hachiya A; Moriwaki S; Baba T J Dermatol Sci; 2018 Sep; 91(3):311-316. PubMed ID: 30005897 [TBL] [Abstract][Full Text] [Related]
12. Upregulation of CD86 and IL-12 by rhododendrol in THP-1 cells cocultured with melanocytes through ROS and ATP. Katahira Y; Sakamoto E; Watanabe A; Furusaka Y; Inoue S; Hasegawa H; Mizoguchi I; Yo K; Yamaji F; Toyoda A; Yoshimoto T J Dermatol Sci; 2022 Dec; 108(3):167-177. PubMed ID: 36610941 [TBL] [Abstract][Full Text] [Related]
13. Open-label pilot study to evaluate the effectiveness of topical bimatoprost on rhododendrol-induced refractory leukoderma. Fukaya S; Kamata M; Kasanuki T; Yokobori M; Takeoka S; Hayashi K; Tanaka T; Fukuyasu A; Ishikawa T; Ohnishi T; Iimuro S; Tada Y; Watanabe S J Dermatol; 2018 Nov; 45(11):1283-1288. PubMed ID: 30156328 [TBL] [Abstract][Full Text] [Related]
14. Zebrafish as a new model for rhododendrol-induced leukoderma. Hayazaki M; Hatano O; Shimabayashi S; Akiyama T; Takemori H; Hamamoto A Pigment Cell Melanoma Res; 2021 Nov; 34(6):1029-1038. PubMed ID: 34310852 [TBL] [Abstract][Full Text] [Related]
15. Rhododenol Activates Melanocytes and Induces Morphological Alteration at Sub-Cytotoxic Levels. Kim M; Lee CS; Lim KM Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31726751 [TBL] [Abstract][Full Text] [Related]
16. Efficacy of oral cholecalciferol on rhododendrol-induced vitiligo: A blinded randomized clinical trial. Watabe A; Yamasaki K; Asano M; Kanbayashi Y; Nasu-Tamabuchi M; Terui H; Furudate S; Kakizaki A; Tsuchiyama K; Kimura Y; Ito Y; Kikuchi K; Aiba S J Dermatol; 2018 Apr; 45(4):456-462. PubMed ID: 29399865 [TBL] [Abstract][Full Text] [Related]
17. Immunohistochemical analysis of rhododendrol-induced leukoderma in improved and aggravated cases. Yasuda M; Sekiguchi A; Kishi C; Toki S; Arase N; Takahashi A; Yang F; Tanemura A; Hayashi M; Abe Y; Hamada T; Suzuki T; Katayama I; Ishikawa O J Dermatol Sci; 2020 Aug; 99(2):140-143. PubMed ID: 32653297 [No Abstract] [Full Text] [Related]
18. Keratinocyte-derived IL-36γ plays a role in hydroquinone-induced chemical leukoderma through inhibition of melanogenesis in human epidermal melanocytes. Pyo JJ; Ahn S; Jin SH; An S; Lee E; Choi J; Shin JC; Choi H; Kim HJ; Choi D; Noh M Arch Toxicol; 2019 Aug; 93(8):2307-2320. PubMed ID: 31256213 [TBL] [Abstract][Full Text] [Related]
19. Glutathione maintenance is crucial for survival of melanocytes after exposure to rhododendrol. Kondo M; Kawabata K; Sato K; Yamaguchi S; Hachiya A; Takahashi Y; Inoue S Pigment Cell Melanoma Res; 2016 Sep; 29(5):541-9. PubMed ID: 27223685 [TBL] [Abstract][Full Text] [Related]
20. 4-(4-Hydroxyphenyl)-2-butanol (rhododendrol)-induced melanocyte cytotoxicity is enhanced by UVB exposure through generation of oxidative stress. Goto N; Tsujimoto M; Nagai H; Masaki T; Ito S; Wakamatsu K; Nishigori C Exp Dermatol; 2018 Jul; 27(7):754-762. PubMed ID: 29630780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]