These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 32558222)
21. [Leukoderma caused by chemicals: mechanisms underlying 4-alkyl/aryl-substituted phenols- and rhododendrol-induced melanocyte loss]. Nishimaki-Mogami T Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2015; (133):13-20. PubMed ID: 26821466 [TBL] [Abstract][Full Text] [Related]
22. Rhododenol and raspberry ketone impair the normal proliferation of melanocytes through reactive oxygen species-dependent activation of GADD45. Kim M; Baek HS; Lee M; Park H; Shin SS; Choi DW; Lim KM Toxicol In Vitro; 2016 Apr; 32():339-46. PubMed ID: 26867644 [TBL] [Abstract][Full Text] [Related]
23. Human tyrosinase is able to oxidize both enantiomers of rhododendrol. Ito S; Gerwat W; Kolbe L; Yamashita T; Ojika M; Wakamatsu K Pigment Cell Melanoma Res; 2014 Nov; 27(6):1149-53. PubMed ID: 25130058 [TBL] [Abstract][Full Text] [Related]
24. Immunohistopathological analysis of frizzled-4-positive immature melanocytes from hair follicles of patients with Rhododenol-induced leukoderma. Okamura K; Ohe R; Abe Y; Ueki M; Hozumi Y; Tamiya G; Matsunaga K; Yamakawa M; Suzuki T J Dermatol Sci; 2015 Nov; 80(2):156-8. PubMed ID: 26277630 [No Abstract] [Full Text] [Related]
25. Polymorphism of the E-cadherin gene CDH1 is associated with susceptibility to vitiligo. Tarlé RG; Silva de Castro CC; do Nascimento LM; Mira MT Exp Dermatol; 2015 Apr; 24(4):300-2. PubMed ID: 25613741 [TBL] [Abstract][Full Text] [Related]
26. Chemical induced pathognomonic features observed in human vitiligo are mediated through miR-2909 RNomics pathway. Kaushik H; Kaul D; Kumaran MS; Parsad D J Dermatol Sci; 2020 Nov; 100(2):92-98. PubMed ID: 33039241 [TBL] [Abstract][Full Text] [Related]
27. Effects of rhododendrol and its metabolic products on melanocytic cell growth. Okura M; Yamashita T; Ishii-Osai Y; Yoshikawa M; Sumikawa Y; Wakamatsu K; Ito S J Dermatol Sci; 2015 Nov; 80(2):142-9. PubMed ID: 26282085 [TBL] [Abstract][Full Text] [Related]
28. Rhododendrol-induced leukoderma update I: Clinical findings and treatment. Matsunaga K; Suzuki K; Ito A; Tanemura A; Abe Y; Suzuki T; Yoshikawa M; Sumikawa Y; Yagami A; Masui Y; Inoue S; Ito S; Katayama I J Dermatol; 2021 Jul; 48(7):961-968. PubMed ID: 33686651 [TBL] [Abstract][Full Text] [Related]
29. Guide for medical professionals (i.e., dermatologists) for the management of Rhododenol-induced leukoderma. Nishigori C; Aoyama Y; Ito A; Suzuki K; Suzuki T; Tanemura A; Ito M; Katayama I; Oiso N; Kagohashi Y; Sugiura S; Fukai K; Funasaka Y; Yamashita T; Matsunaga K J Dermatol; 2015 Feb; 42(2):113-28. PubMed ID: 25622988 [TBL] [Abstract][Full Text] [Related]
30. A framework to mitigate the risk of chemical leukoderma: Consumer products. Bjerke DL; Wu S; Wakamatsu K; Ito S; Wang J; Laughlin T; Hakozaki T Regul Toxicol Pharmacol; 2022 Jun; 131():105157. PubMed ID: 35292310 [TBL] [Abstract][Full Text] [Related]
31. Possible involvement of CCR4+ CD8+ T cells and elevated plasma CCL22 and CCL17 in patients with rhododenol-induced leukoderma. Nishioka M; Tanemura A; Yang L; Tanaka A; Arase N; Katayama I J Dermatol Sci; 2015 Mar; 77(3):188-90. PubMed ID: 25766765 [No Abstract] [Full Text] [Related]
32. Genome-Wide Meta-Analysis Identifies 11 Susceptibility Variants of Vitiligo in the Chinese Han Population. Wang D; Chen W; Wang Y; Yu J; Bai Y; Luo S; Song C; Wang M; Yu Y; Li Z; Han Y; Zhen Q; Sun L J Invest Dermatol; 2024 Aug; 144(8):1843-1849.e1. PubMed ID: 38286188 [TBL] [Abstract][Full Text] [Related]
33. Tyrosinase-catalyzed oxidation of rhododendrol produces 2-methylchromane-6,7-dione, the putative ultimate toxic metabolite: implications for melanocyte toxicity. Ito S; Ojika M; Yamashita T; Wakamatsu K Pigment Cell Melanoma Res; 2014 Sep; 27(5):744-53. PubMed ID: 24903082 [TBL] [Abstract][Full Text] [Related]
35. T-Cell Responses to Tyrosinase-Derived Self-Peptides in Patients with Leukoderma Induced by Rhododendrol: Implications for Immunotherapy Targeting Melanoma. Takagi R; Kawano M; Nakamura K; Tsuchida T; Matsushita S Dermatology; 2016; 232(1):44-9. PubMed ID: 26613259 [TBL] [Abstract][Full Text] [Related]
36. Tyrosinase-catalyzed metabolism of rhododendrol (RD) in B16 melanoma cells: production of RD-pheomelanin and covalent binding with thiol proteins. Ito S; Okura M; Nakanishi Y; Ojika M; Wakamatsu K; Yamashita T Pigment Cell Melanoma Res; 2015 May; 28(3):295-306. PubMed ID: 25713930 [TBL] [Abstract][Full Text] [Related]
37. The effect of rhododendrol inhibition of NF-κB on melanocytes in the presence of tyrosinase. Arase N; Yang L; Tanemura A; Yang F; Suenaga T; Arase H; Katayama I J Dermatol Sci; 2016 Aug; 83(2):157-9. PubMed ID: 27174091 [No Abstract] [Full Text] [Related]
38. The potent pro-oxidant activity of rhododendrol-eumelanin is enhanced by ultraviolet A radiation. Ito S; Agata M; Okochi K; Wakamatsu K Pigment Cell Melanoma Res; 2018 Jul; 31(4):523-528. PubMed ID: 29474003 [TBL] [Abstract][Full Text] [Related]
39. Spectrophotometer is useful for assessing vitiligo and chemical leukoderma severity by quantifying color difference with surrounding normally pigmented skin. Hayashi M; Okamura K; Araki Y; Suzuki M; Tanaka T; Abe Y; Nakano S; Yoshizawa J; Hozumi Y; Inoie M; Suzuki T Skin Res Technol; 2018 May; 24(2):175-179. PubMed ID: 29057565 [TBL] [Abstract][Full Text] [Related]
40. CDH1 and DDR1 common variants confer risk to vitiligo and autoimmune comorbidities. Almasi-Nasrabadi M; Amoli MM; Robati RM; Rajabi F; Ghalamkarpour F; Gauthier Y Gene; 2019 Jun; 700():17-22. PubMed ID: 30890477 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]