BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 32558618)

  • 1. Transcriptome analysis of
    Jiang S; Fang DA; Xu D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(10):1188-1200. PubMed ID: 32558618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome changes of
    Jiang SL; Fang DA; Xu DP
    Physiol Genomics; 2021 Mar; 53(3):116-124. PubMed ID: 33459152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome changes of
    Jiang S; Yang J; Fang DA
    Physiol Genomics; 2020 Aug; 52(8):305-313. PubMed ID: 32538278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histological, oxidative and immune changes in response to 9,10-phenanthrenequione, retene and phenanthrene in
    Jiang S; Yang J; Fang DA
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(7):827-836. PubMed ID: 32308113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptomics analysis of the river pufferfish (Takifugu obscurus) by tributyltin exposure: Clues for revealing its toxic injury mechanism.
    Xu DP; Jiang SL; Zhao CS; Fang DA; Hu HY
    Fish Shellfish Immunol; 2018 Nov; 82():536-543. PubMed ID: 30170111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Part A: Temporal and dose-dependent transcriptional responses in the liver of fathead minnows following short term exposure to the polycyclic aromatic hydrocarbon phenanthrene.
    Loughery JR; Kidd KA; Mercer A; Martyniuk CJ
    Aquat Toxicol; 2018 Jun; 199():90-102. PubMed ID: 29621674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Part B: Morphometric and transcriptomic responses to sub-chronic exposure to the polycyclic aromatic hydrocarbon phenanthrene in the fathead minnow (Pimephales promelas).
    Loughery JR; Kidd KA; Mercer A; Martyniuk CJ
    Aquat Toxicol; 2018 Jun; 199():77-89. PubMed ID: 29621673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altering cytochrome P4501A activity affects polycyclic aromatic hydrocarbon metabolism and toxicity in rainbow trout (Oncorhynchus mykiss).
    Hawkins SA; Billiard SM; Tabash SP; Brown RS; Hodson PV
    Environ Toxicol Chem; 2002 Sep; 21(9):1845-53. PubMed ID: 12206424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histological, biochemical and transcriptomic analyses reveal liver damage in zebrafish (Danio rerio) exposed to phenanthrene.
    Mai Y; Peng S; Li H; Lai Z
    Comp Biochem Physiol C Toxicol Pharmacol; 2019 Nov; 225():108582. PubMed ID: 31374294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxic function of CD28 involving in the TLR/MyD88 signal pathway in the river pufferfish (Takifugu obscurus) after exposed to tributyltin chloride (TBT-Cl).
    Fang DA; Zhao CS; Jiang SL; Zhou YF; Xu DP
    Gene; 2019 Mar; 688():84-92. PubMed ID: 30529248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome analysis reveals the potential mechanism of the albino skin development in pufferfish Takifugu obscurus.
    Jin W; Wen H; Du X; Zheng J; Gu R
    In Vitro Cell Dev Biol Anim; 2015 Jun; 51(6):572-7. PubMed ID: 25761722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of CYP1A inhibition on alkyl-phenanthrene metabolism and embryotoxicity in marine medaka (Oryzias melastigma).
    Mu J; Jin F; Wang J; Wang Y; Cong Y
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):11289-11297. PubMed ID: 26924701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning and beta-naphthoflavone-induced expression of a cytochrome P450 1A (CYP1A) gene from an anadromous river pufferfish, Takifugu obscurus.
    Kim JH; Raisuddin S; Ki JS; Lee JS; Han KN
    Mar Pollut Bull; 2008; 57(6-12):433-40. PubMed ID: 18304588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of differentially expressed genes in gills of tiger puffer (Takifugu rubripes) in response to low-salinity stress.
    Jiang JL; Xu J; Ye L; Sun ML; Jiang ZQ; Mao MG
    Comp Biochem Physiol B Biochem Mol Biol; 2020 Jun; 243-244():110437. PubMed ID: 32247057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome Analysis of the Kidney of Obscure Puffer,
    Wang R; Huang Y; Shi Y; Zhao Z
    Zoolog Sci; 2022 Apr; 39(2):198-205. PubMed ID: 35380191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toll-like receptors (TLRs) respond to tributyltin chloride (TBT-Cl) exposure in the river pufferfish (Takifugu obscurus): Evidences for its toxic injury function.
    Zhao CS; Fang DA; Xu DP
    Fish Shellfish Immunol; 2020 Apr; 99():526-534. PubMed ID: 32097718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embryotoxicity of retene in cotreatment with 2-aminoanthracene, a cytochrome P4501A inhibitor, in rainbow trout (Oncorhynchus mykiss).
    Scott JA; Ross M; Lemire BC; Hodson PV
    Environ Toxicol Chem; 2009 Jun; 28(6):1304-10. PubMed ID: 19166260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of CYP1A enzymes by alpha-naphthoflavone causes both synergism and antagonism of retene toxicity to rainbow trout (Oncorhynchus mykiss).
    Hodson PV; Qureshi K; Noble CA; Akhtar P; Brown RS
    Aquat Toxicol; 2007 Mar; 81(3):275-85. PubMed ID: 17257690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative embryotoxicity of phenanthrene and alkyl-phenanthrene to marine medaka (Oryzias melastigma).
    Mu J; Wang J; Jin F; Wang X; Hong H
    Mar Pollut Bull; 2014 Aug; 85(2):505-15. PubMed ID: 24559736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of the mechanism of fatty liver formation in Takifugu fasciatus following copper exposure.
    Wang T; Wei X; Chen T; Wang W; Xia X; Miao J; Yin S
    Ecotoxicol Environ Saf; 2019 Oct; 181():353-361. PubMed ID: 31207574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.