These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 32558867)

  • 1. Uptake, translocation and accumulation of nickel and cobalt in Berkheya coddii, a 'metal crop' from South Africa.
    Rue M; Paul ALD; Echevarria G; van der Ent A; Simonnot MO; Morel JL
    Metallomics; 2020 Aug; 12(8):1278-1289. PubMed ID: 32558867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: implications for polymetallic phytomining and phytoremediation.
    Keeling SM; Stewart RB; Anderson CW; Robinson BH
    Int J Phytoremediation; 2003; 5(3):235-44. PubMed ID: 14750431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecophysiology of nickel hyperaccumulating plants from South Africa - from ultramafic soil and mycorrhiza to plants and insects.
    Mesjasz-Przybyłowicz J; Przybyłowicz WJ
    Metallomics; 2020 Jul; 12(7):1018-1035. PubMed ID: 32459223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa.
    Turnau K; Mesjasz-Przybylowicz J
    Mycorrhiza; 2003 Aug; 13(4):185-90. PubMed ID: 12938030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mycorrhizal colonization affects the elemental distribution in roots of Ni-hyperaccumulator Berkheya coddii Roessler.
    Orłowska E; Przybyłowicz W; Orlowski D; Mongwaketsi NP; Turnau K; Mesjasz-Przybyłowicz J
    Environ Pollut; 2013 Apr; 175():100-9. PubMed ID: 23369753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root responses to soil Ni heterogeneity in a hyperaccumulator and a non-accumulator species.
    Moradi AB; Conesa HM; Robinson BH; Lehmann E; Kaestner A; Schulin R
    Environ Pollut; 2009; 157(8-9):2189-96. PubMed ID: 19427726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining.
    Boominathan R; Saha-Chaudhury NM; Sahajwalla V; Doran PM
    Biotechnol Bioeng; 2004 May; 86(3):243-50. PubMed ID: 15083504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler.
    Orłowska E; Przybyłowicz W; Orlowski D; Turnau K; Mesjasz-Przybyłowicz J
    Environ Pollut; 2011 Dec; 159(12):3730-8. PubMed ID: 21835516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elemental distribution in reproductive and neural organs of the Epilachna nylanderi (Coleoptera: Coccinellidae), a phytophage of nickel hyperaccumulator Berkheya coddii (Asterales: Asteraceae) by micro-PIXE.
    Mesjasz-Przybyłowicz J; Orłowska E; Augustyniak M; Nakonieczny M; Tarnawska M; Przybyłowicz W; Migula P
    J Insect Sci; 2014; 14():152. PubMed ID: 25399425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperaccumulator Alyssum murale relies on a different metal storage mechanism for cobalt than for nickel.
    Tappero R; Peltier E; Gräfe M; Heidel K; Ginder-Vogel M; Livi KJT; Rivers ML; Marcus MA; Chaney RL; Sparks DL
    New Phytol; 2007; 175(4):641-654. PubMed ID: 17688581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate.
    Sun Y; Wen C; Liang X; He C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nickel phytomining from industrial wastes: Growing nickel hyperaccumulator plants on galvanic sludges.
    Tognacchini A; Rosenkranz T; van der Ent A; Machinet GE; Echevarria G; Puschenreiter M
    J Environ Manage; 2020 Jan; 254():109798. PubMed ID: 31739090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential of
    Navarrete Gutiérrez DM; Nkrumah PN; van der Ent A; Pollard J; Baker AJM; Navarrete Torralba F; Pons MN; Cuevas Sánchez JA; Gómez Hernández T; Echevarria G
    Int J Phytoremediation; 2021; 23(11):1157-1168. PubMed ID: 33586537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge.
    Lange B; van der Ent A; Baker AJ; Echevarria G; Mahy G; Malaisse F; Meerts P; Pourret O; Verbruggen N; Faucon MP
    New Phytol; 2017 Jan; 213(2):537-551. PubMed ID: 27625303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can Clethra barbinervis Distinguish Nickel and Cobalt in Uptake and Translocation?
    Yamaguchi T; Tomioka R; Takenaka C
    Int J Mol Sci; 2015 Sep; 16(9):21378-91. PubMed ID: 26370968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalt and nickel content in Hydrocharis morsus-ranae and their bioremoval from single- and binary solutions.
    Polechońska L; Samecka-Cymerman A
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32044-32052. PubMed ID: 30218329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Community diversity and potential functions of rhizosphere-associated bacteria of nickel hyperaccumulators found in Albania.
    Lopez S; Goux X; Echevarria G; Calusinska M; Morel JL; Benizri E
    Sci Total Environ; 2019 Mar; 654():237-249. PubMed ID: 30445325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Key processes and progress in phytomining of nickel contaminated soils: a review].
    Geng K; Sun S; Huang Z; Huang C; Wu C; Deng T; Tang Y; Ruan J; He C; Morel JL; Qiu R
    Sheng Wu Gong Cheng Xue Bao; 2020 Mar; 36(3):436-449. PubMed ID: 32237538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elemental distribution and chemical speciation of copper and cobalt in three metallophytes from the copper-cobalt belt in Northern Zambia.
    van der Ent A; Vinya R; Erskine PD; Malaisse F; Przybyłowicz WJ; Barnabas AD; Harris HH; Mesjasz-Przybyłowicz J
    Metallomics; 2020 May; 12(5):682-701. PubMed ID: 32255439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of transgenic tobacco plants expressing a bacterial Co-Ni transporter for acquisition of cobalt.
    Nair S; Joshi-Saha A; Singh S; Ramachandran V; Singh S; Thorat V; Kaushik CP; Eapen S; D'Souza SF
    J Biotechnol; 2012 Nov; 161(4):422-8. PubMed ID: 22898176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.