These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 32558867)
21. Assessing the agromining potential of Mediterranean nickel-hyperaccumulating plant species at field-scale in ultramafic soils under humid-temperate climate. Pardo T; Rodríguez-Garrido B; Saad RF; Soto-Vázquez JL; Loureiro-Viñas M; Prieto-Fernández Á; Echevarria G; Benizri E; Kidd PS Sci Total Environ; 2018 Jul; 630():275-286. PubMed ID: 29477825 [TBL] [Abstract][Full Text] [Related]
22. Responses of Landoltia punctata to cobalt and nickel: Removal, growth, photosynthesis, antioxidant system and starch metabolism. Guo L; Ding Y; Xu Y; Li Z; Jin Y; He K; Fang Y; Zhao H Aquat Toxicol; 2017 Sep; 190():87-93. PubMed ID: 28697459 [TBL] [Abstract][Full Text] [Related]
23. Nickel stocks and fluxes in a tropical agromining 'metal crop' farming system in Sabah (Malaysia). Tisserand R; van der Ent A; Nkrumah PN; Didier S; Sumail S; Morel JL; Echevarria G Sci Total Environ; 2024 Apr; 919():170691. PubMed ID: 38325468 [TBL] [Abstract][Full Text] [Related]
24. Physiological and Gene Expression Responses of Six Annual Ryegrass Cultivars to Cobalt, Lead, and Nickel Stresses. Qiao S; Tao Y; Shan Q; Wang J; Chai T; Gong S; Qiao K Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948380 [TBL] [Abstract][Full Text] [Related]
25. Short-term effects of dimethoate on metabolic responses in Chrysolina pardalina (Chrysomelidae) feeding on Berkheya coddii (Asteraceae), a hyper-accumulator of nickel. Augustyniak M; Migula P; Mesjasz-Przybyłowicz J; Tarnawska M; Nakonieczny M; Babczyńska A; Przybyłowicz W; Augustyniak MG Environ Pollut; 2007 Nov; 150(2):218-24. PubMed ID: 17374424 [TBL] [Abstract][Full Text] [Related]
26. Phytoremediation of soil contaminated with nickel, cadmium and cobalt. Boros-Lajszner E; Wyszkowska J; Kucharski J Int J Phytoremediation; 2021; 23(3):252-262. PubMed ID: 32854521 [TBL] [Abstract][Full Text] [Related]
27. Growth of Agropyron elongatum in a simulated nickel contaminated soil with lime stabilization. Chen Q; Wong JW Sci Total Environ; 2006 Aug; 366(2-3):448-55. PubMed ID: 16815530 [TBL] [Abstract][Full Text] [Related]
28. The effect of pH on metal accumulation in two Alyssum species. Kukier U; Peters CA; Chaney RL; Angle JS; Roseberg RJ J Environ Qual; 2004; 33(6):2090-102. PubMed ID: 15537931 [TBL] [Abstract][Full Text] [Related]
29. Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors. Lange B; Pourret O; Meerts P; Jitaru P; Cancès B; Grison C; Faucon MP Chemosphere; 2016 Mar; 146():75-84. PubMed ID: 26706934 [TBL] [Abstract][Full Text] [Related]
30. Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. Tank N; Saraf M J Basic Microbiol; 2009 Apr; 49(2):195-204. PubMed ID: 18798171 [TBL] [Abstract][Full Text] [Related]
31. Improving the Agronomy of Alyssum murale for Extensive Phytomining: A Five-Year Field Study. Bani A; Echevarria G; Sulçe S; Morel JL Int J Phytoremediation; 2015; 17(1-6):117-27. PubMed ID: 25237722 [TBL] [Abstract][Full Text] [Related]
32. A nickel phytomining field trial using Odontarrhena chalcidica and Noccaea goesingensis on an Austrian serpentine soil. Rosenkranz T; Hipfinger C; Ridard C; Puschenreiter M J Environ Manage; 2019 Jul; 242():522-528. PubMed ID: 31078125 [TBL] [Abstract][Full Text] [Related]
33. Phytoaccumulation and tolerance of Riccinus communis L. to nickel. Adhikari T; Kumar A Int J Phytoremediation; 2012; 14(5):481-92. PubMed ID: 22567726 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of the phytoremediation potential of Arundo donax L. for nickel-contaminated soil. Atma W; Larouci M; Meddah B; Benabdeli K; Sonnet P Int J Phytoremediation; 2017 Apr; 19(4):377-386. PubMed ID: 27592714 [TBL] [Abstract][Full Text] [Related]
35. Organic amendments for improving biomass production and metal yield of Ni-hyperaccumulating plants. Álvarez-López V; Prieto-Fernández Á; Cabello-Conejo MI; Kidd PS Sci Total Environ; 2016 Apr; 548-549():370-379. PubMed ID: 26803735 [TBL] [Abstract][Full Text] [Related]
36. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932 [TBL] [Abstract][Full Text] [Related]
37. Quantifying nickel in soils and plants in an ultramafic area in Philippines. Susaya JP; Kim KH; Asio VB; Chen ZS; Navarrete I Environ Monit Assess; 2010 Aug; 167(1-4):505-14. PubMed ID: 19603280 [TBL] [Abstract][Full Text] [Related]
38. Effects of nickel hyperaccumulation on physiological characteristics of Alyssum murale grown on metal contaminated waste amended soil. Sellami R; Gharbi F; Rejeb S; Rejeb MN; Henchi B; Echevarria G; Morel JL Int J Phytoremediation; 2012 Jul; 14(6):609-20. PubMed ID: 22908630 [TBL] [Abstract][Full Text] [Related]
39. Exogenous cytokinin treatments of an Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction. Cassina L; Tassi E; Morelli E; Giorgetti L; Remorini D; Chaney RL; Barbafieri M Int J Phytoremediation; 2011; 13 Suppl 1():90-101. PubMed ID: 22046753 [TBL] [Abstract][Full Text] [Related]
40. Nickel hyperaccumulation, elemental profiles and agromining potential of three species of Ghafoori M; Shariati M; van der Ent A; Baker AJM Int J Phytoremediation; 2023; 25(3):381-392. PubMed ID: 35788162 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]