These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
311 related articles for article (PubMed ID: 32559068)
1. Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics: Application to Materials and Biological Systems. Gkeka P; Stoltz G; Barati Farimani A; Belkacemi Z; Ceriotti M; Chodera JD; Dinner AR; Ferguson AL; Maillet JB; Minoux H; Peter C; Pietrucci F; Silveira A; Tkatchenko A; Trstanova Z; Wiewiora R; Lelièvre T J Chem Theory Comput; 2020 Aug; 16(8):4757-4775. PubMed ID: 32559068 [TBL] [Abstract][Full Text] [Related]
2. Machine learned coarse-grained protein force-fields: Are we there yet? Durumeric AEP; Charron NE; Templeton C; Musil F; Bonneau K; Pasos-Trejo AS; Chen Y; Kelkar A; Noé F; Clementi C Curr Opin Struct Biol; 2023 Apr; 79():102533. PubMed ID: 36731338 [TBL] [Abstract][Full Text] [Related]
3. Protocol for the development of coarse-grained structures for macromolecular simulation using GROMACS. Niranjan V; Rao P; Uttarkar A; Kumar J PLoS One; 2023; 18(8):e0288264. PubMed ID: 37535543 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning of Coarse-Grained Molecular Dynamics Force Fields. Wang J; Olsson S; Wehmeyer C; Pérez A; Charron NE; de Fabritiis G; Noé F; Clementi C ACS Cent Sci; 2019 May; 5(5):755-767. PubMed ID: 31139712 [TBL] [Abstract][Full Text] [Related]
5. Machine learning coarse-grained potentials of protein thermodynamics. Majewski M; Pérez A; Thölke P; Doerr S; Charron NE; Giorgino T; Husic BE; Clementi C; Noé F; De Fabritiis G Nat Commun; 2023 Sep; 14(1):5739. PubMed ID: 37714883 [TBL] [Abstract][Full Text] [Related]
6. Top-Down Machine Learning of Coarse-Grained Protein Force Fields. Navarro C; Majewski M; De Fabritiis G J Chem Theory Comput; 2023 Nov; 19(21):7518-7526. PubMed ID: 37874270 [TBL] [Abstract][Full Text] [Related]
7. Utilizing Machine Learning for Efficient Parameterization of Coarse Grained Molecular Force Fields. McDonagh JL; Shkurti A; Bray DJ; Anderson RL; Pyzer-Knapp EO J Chem Inf Model; 2019 Oct; 59(10):4278-4288. PubMed ID: 31549507 [TBL] [Abstract][Full Text] [Related]
11. Toolkit for the Construction of Reproducing Kernel-Based Representations of Data: Application to Multidimensional Potential Energy Surfaces. Unke OT; Meuwly M J Chem Inf Model; 2017 Aug; 57(8):1923-1931. PubMed ID: 28666387 [TBL] [Abstract][Full Text] [Related]
12. Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites. Rzepiela AJ; Louhivuori M; Peter C; Marrink SJ Phys Chem Chem Phys; 2011 Jun; 13(22):10437-48. PubMed ID: 21494747 [TBL] [Abstract][Full Text] [Related]
13. Machine learning for protein folding and dynamics. Noé F; De Fabritiis G; Clementi C Curr Opin Struct Biol; 2020 Feb; 60():77-84. PubMed ID: 31881449 [TBL] [Abstract][Full Text] [Related]
14. The SIRAH force field: A suite for simulations of complex biological systems at the coarse-grained and multiscale levels. Klein F; Soñora M; Helene Santos L; Nazareno Frigini E; Ballesteros-Casallas A; Rodrigo Machado M; Pantano S J Struct Biol; 2023 Sep; 215(3):107985. PubMed ID: 37331570 [TBL] [Abstract][Full Text] [Related]
15. Hybrid All-Atom/Coarse-Grained Simulations of Proteins by Direct Coupling of CHARMM and PRIMO Force Fields. Kar P; Feig M J Chem Theory Comput; 2017 Nov; 13(11):5753-5765. PubMed ID: 28992696 [TBL] [Abstract][Full Text] [Related]
16. Application of Machine Learning Algorithms to Metadynamics for the Elucidation of the Binding Modes and Free Energy Landscape of Drug/Target Interactions: a Case Study. Siddiqui GA; Stebani JA; Wragg D; Koutsourelakis PS; Casini A; Gagliardi A Chemistry; 2023 Nov; 29(62):e202302375. PubMed ID: 37555841 [TBL] [Abstract][Full Text] [Related]
17. Improvement of the Force Field for Ikejo M; Watanabe H; Shimamura K; Tanaka S Molecules; 2021 Nov; 26(21):. PubMed ID: 34771103 [TBL] [Abstract][Full Text] [Related]
18. Toward a Mobility-Preserving Coarse-Grained Model: A Data-Driven Approach. Bag S; Meinel MK; Müller-Plathe F J Chem Theory Comput; 2022 Dec; 18(12):7108-7120. PubMed ID: 36449362 [TBL] [Abstract][Full Text] [Related]
19. Neural Network Based Prediction of Conformational Free Energies - A New Route toward Coarse-Grained Simulation Models. Lemke T; Peter C J Chem Theory Comput; 2017 Dec; 13(12):6213-6221. PubMed ID: 29120633 [TBL] [Abstract][Full Text] [Related]
20. Neural Upscaling from Residue-Level Protein Structure Networks to Atomistic Structures. Duong VT; Diessner EM; Grazioli G; Martin RW; Butts CT Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]