BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32559085)

  • 1. Heterochirality Restricts the Self-Assembly of Phenylalanine Dipeptides Capped with Highly Aromatic Groups.
    Gil AM; Casanovas J; Mayans E; Jiménez AI; Puiggalí J; Alemán C
    J Phys Chem B; 2020 Jul; 124(28):5913-5918. PubMed ID: 32559085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the Self-Assembly of Highly Aromatic Phenylalanine Homopeptides.
    Mayans E; Alemán C
    Molecules; 2020 Dec; 25(24):. PubMed ID: 33419355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembly pathways in a triphenylalanine peptide capped with aromatic groups.
    Pérez-Madrigal MM; Gil AM; Casanovas J; Jiménez AI; Macor LP; Alemán C
    Colloids Surf B Biointerfaces; 2022 Aug; 216():112522. PubMed ID: 35561635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterochirality and Halogenation Control Phe-Phe Hierarchical Assembly.
    Kralj S; Bellotto O; Parisi E; Garcia AM; Iglesias D; Semeraro S; Deganutti C; D'Andrea P; Vargiu AV; Geremia S; De Zorzi R; Marchesan S
    ACS Nano; 2020 Dec; 14(12):16951-16961. PubMed ID: 33175503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Intramolecular Aromatic π-π Interactions in the Self-Assembly of Di-l-Phenylalanine Dipeptide Driven by Intermolecular Interactions: Effect of Alanine Substitution.
    Reddy SM; Shanmugam G
    Chemphyschem; 2016 Sep; 17(18):2897-907. PubMed ID: 27309737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels.
    Marchesan S; Waddington L; Easton CD; Winkler DA; Goodall L; Forsythe J; Hartley PG
    Nanoscale; 2012 Nov; 4(21):6752-60. PubMed ID: 22955637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the effects of peptoid substitutions in self-assembly of Fmoc-diphenylalanine derivatives.
    Rajbhandary A; Nilsson BL
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27696352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembled Fmoc-Arg-Phe-Phe Peptide Gels with Highly Potent Bactericidal Activities.
    Chauhan N; Singh Y
    ACS Biomater Sci Eng; 2020 Oct; 6(10):5507-5518. PubMed ID: 33320569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic retro-inverso dipeptides with two aromatic side chains. II. Conformational analysis.
    Yamazaki T; Nunami K; Goodman M
    Biopolymers; 1991 Nov; 31(13):1513-28. PubMed ID: 1814501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Assembly of Phenylalanine-Leucine, Leucine-Phenylalanine, and Cyclo(-leucine-phenylalanine) Dipeptides through Simulations and Experiments.
    Divanach P; Fanouraki E; Mitraki A; Harmandaris V; Rissanou AN
    J Phys Chem B; 2023 May; 127(19):4208-4219. PubMed ID: 37148280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of molecular chirality and solvents in directing the self-assembly of peptide into an ultra-pH-sensitive hydrogel.
    Zhang G; Zhang L; Rao H; Wang Y; Li Q; Qi W; Yang X; Su R; He Z
    J Colloid Interface Sci; 2020 Oct; 577():388-396. PubMed ID: 32497920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of heterochirality-mediated stereochemical interactions in peptide architectures.
    Zheng Y; Mao K; Chen S; Zhu X; Jiang M; Wu CJ; Zhu H
    Colloids Surf B Biointerfaces; 2023 Apr; 224():113200. PubMed ID: 36774824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic and aromatic interaction-directed supramolecular self-assembly of a designed Fmoc-tripeptide into helical nanoribbons.
    Xie Y; Wang X; Huang R; Qi W; Wang Y; Su R; He Z
    Langmuir; 2015 Mar; 31(9):2885-94. PubMed ID: 25694059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding the structural diversity of peptide assemblies by coassembling dipeptides with diphenylalanine.
    Tang Y; Yao Y; Wei G
    Nanoscale; 2020 Feb; 12(5):3038-3049. PubMed ID: 31971529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the self-assembly of the bioactive dipeptide L-carnosine by incorporation of a bulky aromatic substituent.
    Castelletto V; Cheng G; Greenland BW; Hamley IW; Harris PJ
    Langmuir; 2011 Mar; 27(6):2980-8. PubMed ID: 21338121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical self-assembly of di-, tri- and tetraphenylalanine peptides capped with two fluorenyl functionalities: from polymorphs to dendrites.
    Mayans E; Ballano G; Casanovas J; Del Valle LJ; Pérez-Madrigal MM; Estrany F; Jiménez AI; Puiggalí J; Cativiela C; Alemán C
    Soft Matter; 2016 Jun; 12(24):5475-88. PubMed ID: 27220532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly of heterochiral, aliphatic dipeptides with Leu.
    Scarel E; De Corti M; Polentarutti M; Pierri G; Tedesco C; Marchesan S
    J Pept Sci; 2024 May; 30(5):e3559. PubMed ID: 38111175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Transformation of Coassembled Fmoc-Protected Aromatic Amino Acids to Nanoparticles.
    Wang T; Ménard-Moyon C; Bianco A
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10532-10544. PubMed ID: 38367060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ile-phe dipeptide self-assembly: clues to amyloid formation.
    de Groot NS; Parella T; Aviles FX; Vendrell J; Ventura S
    Biophys J; 2007 Mar; 92(5):1732-41. PubMed ID: 17172307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.