These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 32559333)
1. Heptabladed β-propeller lectins PLL2 and PHL from Photorhabdus spp. recognize O-methylated sugars and influence the host immune system. Fujdiarová E; Houser J; Dobeš P; Paulíková G; Kondakov N; Kononov L; Hyršl P; Wimmerová M FEBS J; 2021 Feb; 288(4):1343-1365. PubMed ID: 32559333 [TBL] [Abstract][Full Text] [Related]
2. Characterization of novel bangle lectin from Photorhabdus asymbiotica with dual sugar-binding specificity and its effect on host immunity. Jančaříková G; Houser J; Dobeš P; Demo G; Hyršl P; Wimmerová M PLoS Pathog; 2017 Aug; 13(8):e1006564. PubMed ID: 28806750 [TBL] [Abstract][Full Text] [Related]
3. Fucosylated inhibitors of recently identified bangle lectin from Photorhabdus asymbiotica. Paulíková G; Houser J; Kašáková M; Oroszová B; Bertolotti B; Parkan K; Moravcová J; Wimmerová M Sci Rep; 2019 Oct; 9(1):14904. PubMed ID: 31624296 [TBL] [Abstract][Full Text] [Related]
4. Lectin PLL3, a Novel Monomeric Member of the Seven-Bladed β-Propeller Lectin Family. Faltinek L; Fujdiarová E; Melicher F; Houser J; Kašáková M; Kondakov N; Kononov L; Parkan K; Vidal S; Wimmerová M Molecules; 2019 Dec; 24(24):. PubMed ID: 31835851 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of α-l-Fucopyranoside-Presenting Glycoclusters and Investigation of Their Interaction with Photorhabdus asymbiotica Lectin (PHL). Jančaříková G; Herczeg M; Fujdiarová E; Houser J; Kövér KE; Borbás A; Wimmerová M; Csávás M Chemistry; 2018 Mar; 24(16):4055-4068. PubMed ID: 29341313 [TBL] [Abstract][Full Text] [Related]
6. A Novel Fucose-binding Lectin from Photorhabdus luminescens (PLL) with an Unusual Heptabladed β-Propeller Tetrameric Structure. Kumar A; Sýkorová P; Demo G; Dobeš P; Hyršl P; Wimmerová M J Biol Chem; 2016 Nov; 291(48):25032-25049. PubMed ID: 27758853 [TBL] [Abstract][Full Text] [Related]
7. Small molecule perimeter defense in entomopathogenic bacteria. Crawford JM; Portmann C; Zhang X; Roeffaers MB; Clardy J Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10821-6. PubMed ID: 22711807 [TBL] [Abstract][Full Text] [Related]
8. Host-derived extracellular nucleic acids enhance innate immune responses, induce coagulation, and prolong survival upon infection in insects. Altincicek B; Stötzel S; Wygrecka M; Preissner KT; Vilcinskas A J Immunol; 2008 Aug; 181(4):2705-12. PubMed ID: 18684961 [TBL] [Abstract][Full Text] [Related]
9. Thioester-Containing Protein-4 Regulates the Drosophila Immune Signaling and Function against the Pathogen Photorhabdus. Shokal U; Eleftherianos I J Innate Immun; 2017; 9(1):83-93. PubMed ID: 27771727 [TBL] [Abstract][Full Text] [Related]
10. The peptidoglycan recognition protein PGRP-LE regulates the Drosophila immune response against the pathogen Photorhabdus. Chevée V; Sachar U; Yadav S; Heryanto C; Eleftherianos I Microb Pathog; 2019 Nov; 136():103664. PubMed ID: 31404632 [TBL] [Abstract][Full Text] [Related]
12. The Drosophila Thioester containing Protein-4 participates in the induction of the cellular immune response to the pathogen Photorhabdus. Shokal U; Eleftherianos I Dev Comp Immunol; 2017 Nov; 76():200-208. PubMed ID: 28642050 [TBL] [Abstract][Full Text] [Related]
13. RNAi suppression of recognition protein mediated immune responses in the tobacco hornworm Manduca sexta causes increased susceptibility to the insect pathogen Photorhabdus. Eleftherianos I; Millichap PJ; ffrench-Constant RH; Reynolds SE Dev Comp Immunol; 2006; 30(12):1099-107. PubMed ID: 16620974 [TBL] [Abstract][Full Text] [Related]
14. Developmental modulation of immunity: changes within the feeding period of the fifth larval stage in the defence reactions of Manduca sexta to infection by Photorhabdus. Eleftherianos I; Baldwin H; ffrench-Constant RH; Reynolds SE J Insect Physiol; 2008 Jan; 54(1):309-18. PubMed ID: 18001766 [TBL] [Abstract][Full Text] [Related]
15. Probing the tri-trophic interaction between insects, nematodes and Photorhabdus. Eleftherianos I; Joyce S; Ffrench-Constant RH; Clarke DJ; Reynolds SE Parasitology; 2010 Sep; 137(11):1695-706. PubMed ID: 20500922 [TBL] [Abstract][Full Text] [Related]
16. Galleria mellonella larvae are capable of sensing the extent of priming agent and mounting proportionatal cellular and humoral immune responses. Wu G; Xu L; Yi Y Immunol Lett; 2016 Jun; 174():45-52. PubMed ID: 27107784 [TBL] [Abstract][Full Text] [Related]