BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32559334)

  • 1. YkgM and YkgO maintain translation by replacing their paralogs, zinc-binding ribosomal proteins L31 and L36, with identical activities.
    Ueta M; Wada C; Wada A
    Genes Cells; 2020 Aug; 25(8):562-581. PubMed ID: 32559334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosomal protein L31 in Escherichia coli contributes to ribosome subunit association and translation, whereas short L31 cleaved by protease 7 reduces both activities.
    Ueta M; Wada C; Bessho Y; Maeda M; Wada A
    Genes Cells; 2017 May; 22(5):452-471. PubMed ID: 28397381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autogenous regulation in vivo of the
    Aseev LV; Koledinskaya LS; Boni IV
    RNA; 2020 Jul; 26(7):814-826. PubMed ID: 32209634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of Zur-controlled ribosomal proteins to growth under zinc starvation conditions.
    Gabriel SE; Helmann JD
    J Bacteriol; 2009 Oct; 191(19):6116-22. PubMed ID: 19648245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zur and zinc increase expression of E. coli ribosomal protein L31 through RNA-mediated repression of the repressor L31p.
    Rasmussen RA; Wang S; Camarillo JM; Sosnowski V; Cho BK; Goo YA; Lucks JB; O'Halloran TV
    Nucleic Acids Res; 2022 Dec; 50(22):12739-12753. PubMed ID: 36533433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards an elucidation of the roles of the ribosome during different growth phases in Bacillus subtilis.
    Nanamiya H; Kawamura F
    Biosci Biotechnol Biochem; 2010; 74(3):451-61. PubMed ID: 20208344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Zn(II)-responsive ribosomal proteins YkgM and L31 in E. coli.
    Hensley MP; Gunasekera TS; Easton JA; Sigdel TK; Sugarbaker SA; Klingbeil L; Breece RM; Tierney DL; Crowder MW
    J Inorg Biochem; 2012 Jun; 111():164-72. PubMed ID: 22196016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial ribosome heterogeneity: Changes in ribosomal protein composition during transition into stationary growth phase.
    Lilleorg S; Reier K; Pulk A; Liiv A; Tammsalu T; Peil L; Cate JHD; Remme J
    Biochimie; 2019 Jan; 156():169-180. PubMed ID: 30359641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knockout of ribosomal protein RpmJ leads to zinc resistance in Escherichia coli.
    Shirakawa R; Ishikawa K; Furuta K; Kaito C
    PLoS One; 2023; 18(3):e0277162. PubMed ID: 36961858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome.
    Nanamiya H; Akanuma G; Natori Y; Murayama R; Kosono S; Kudo T; Kobayashi K; Ogasawara N; Park SM; Ochi K; Kawamura F
    Mol Microbiol; 2004 Apr; 52(1):273-83. PubMed ID: 15049826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Severe zinc depletion of Escherichia coli: roles for high affinity zinc binding by ZinT, zinc transport and zinc-independent proteins.
    Graham AI; Hunt S; Stokes SL; Bramall N; Bunch J; Cox AG; McLeod CW; Poole RK
    J Biol Chem; 2009 Jul; 284(27):18377-89. PubMed ID: 19377097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic effects of paralogous ribosomal proteins bL31A and bL31B in E. coli.
    Lilleorg S; Reier K; Volõnkin P; Remme J; Liiv A
    Sci Rep; 2020 Jul; 10(1):11682. PubMed ID: 32669635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liberation of zinc-containing L31 (RpmE) from ribosomes by its paralogous gene product, YtiA, in Bacillus subtilis.
    Akanuma G; Nanamiya H; Natori Y; Nomura N; Kawamura F
    J Bacteriol; 2006 Apr; 188(7):2715-20. PubMed ID: 16547061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular logic of the Zur-regulated zinc deprivation response in Bacillus subtilis.
    Shin JH; Helmann JD
    Nat Commun; 2016 Aug; 7():12612. PubMed ID: 27561249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic study of the Bacillus subtilis ribosome: Finding of zinc-dependent replacement for ribosomal protein L31 paralogues.
    Nanamiya H; Kawamura F; Kosono S
    J Gen Appl Microbiol; 2006 Oct; 52(5):249-58. PubMed ID: 17310068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2).
    Shin JH; Oh SY; Kim SJ; Roe JH
    J Bacteriol; 2007 Jun; 189(11):4070-7. PubMed ID: 17416659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Zur-dependent genes and direct Zur targets in Yersinia pestis.
    Li Y; Qiu Y; Gao H; Guo Z; Han Y; Song Y; Du Z; Wang X; Zhou D; Yang R
    BMC Microbiol; 2009 Jun; 9():128. PubMed ID: 19552825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc-responsive regulation of alternative ribosomal protein genes in Streptomyces coelicolor involves zur and sigmaR.
    Owen GA; Pascoe B; Kallifidas D; Paget MS
    J Bacteriol; 2007 Jun; 189(11):4078-86. PubMed ID: 17400736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of Ribosomal Protein S14 Demonstrated by the Reconstruction of Chimeric Ribosomes in Bacillus subtilis.
    Akanuma G; Kawamura F; Watanabe S; Watanabe M; Okawa F; Natori Y; Nanamiya H; Asai K; Chibazakura T; Yoshikawa H; Soma A; Hishida T; Kato-Yamada Y
    J Bacteriol; 2021 Apr; 203(10):. PubMed ID: 33649148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A small protein unique to bacteria organizes rRNA tertiary structure over an extensive region of the 50 S ribosomal subunit.
    Maeder C; Draper DE
    J Mol Biol; 2005 Nov; 354(2):436-46. PubMed ID: 16246363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.