These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 32559369)
1. Temperature/pH Smart Nanofibers with Excellent Biocompatibility and Their Dual Interactions Stimulus-Responsive Mechanism. He H; Shi X; Chen W; Chen R; Zhao C; Wang S J Agric Food Chem; 2020 Jul; 68(28):7425-7433. PubMed ID: 32559369 [TBL] [Abstract][Full Text] [Related]
2. Intelligent Cellulose Nanofibers with Excellent Biocompatibility Enable Sustained Antibacterial and Drug Release via a pH-Responsive Mechanism. He H; Cheng M; Liang Y; Zhu H; Sun Y; Dong D; Wang S J Agric Food Chem; 2020 Mar; 68(11):3518-3527. PubMed ID: 32091890 [TBL] [Abstract][Full Text] [Related]
3. Biocompatible smart cellulose nanofibres for sustained drug release via pH and temperature dual-responsive mechanism. Liang Y; Zhu H; Wang L; He H; Wang S Carbohydr Polym; 2020 Dec; 249():116876. PubMed ID: 32933696 [TBL] [Abstract][Full Text] [Related]
4. Regulating drug release from pH- and temperature-responsive electrospun CTS-g-PNIPAAm/poly(ethylene oxide) hydrogel nanofibers. Yuan H; Li B; Liang K; Lou X; Zhang Y Biomed Mater; 2014 Aug; 9(5):055001. PubMed ID: 25135109 [TBL] [Abstract][Full Text] [Related]
5. Thermo-, pH-, and Light-Responsive Supramolecular Complexes Based on a Thermoresponsive Hyperbranched Polymer. Zhang J; Liu HJ; Yuan Y; Jiang S; Yao Y; Chen Y ACS Macro Lett; 2013 Jan; 2(1):67-71. PubMed ID: 35581827 [TBL] [Abstract][Full Text] [Related]
6. Green and Facile Synthesis of Highly Stable Gold Nanoparticles via Hyperbranched Polymer In-Situ Reduction and Their Application in Ag⁺ Detection and Separation. Liu X; Zhu C; Xu L; Dai Y; Liu Y; Liu Y Polymers (Basel); 2018 Jan; 10(1):. PubMed ID: 30966079 [TBL] [Abstract][Full Text] [Related]
7. Modification and characterization of a novel and fluorine-free cellulose nanofiber with hydrophobic and oleophobic properties. Wen B; Yan Z; Feizheng J; Huang Y; Fang C; Zhao S; Li J; Guo D; Zhao H; Sha L; Sun Q; Xu Y Int J Biol Macromol; 2024 Jul; 273(Pt 1):132783. PubMed ID: 38825285 [TBL] [Abstract][Full Text] [Related]
8. Hydrophobic, ultraviolet radiation-shielding, and antioxidant functionalities of TEMPO-oxidized cellulose nanofibril film coated with modified lignin nanoparticles. Hai LV; Bandi R; Dadigala R; Han SY; Cho SW; Yang GU; Ma SY; Lee DY; Jin JW; Moon HC; Kwon GJ; Lee SH Int J Biol Macromol; 2024 Oct; 277(Pt 4):134464. PubMed ID: 39098701 [TBL] [Abstract][Full Text] [Related]
9. Three-Component Supramolecular System with Multistimuli-Responsive Properties in Water. Wang B; Liu HJ; Fu XB; Yao Y; Chen Y Chem Asian J; 2015 Aug; 10(8):1690-7. PubMed ID: 26033839 [TBL] [Abstract][Full Text] [Related]
10. Influence of TEMPO oxidation on the properties of ethylene glycol methyl ether acrylate grafted cellulose sponges. Chiulan I; Panaitescu DM; Radu ER; Vizireanu S; Sătulu V; Biţă B; Gabor RA; Nicolae CA; Raduly M; Rădiţoiu V Carbohydr Polym; 2021 Nov; 272():118458. PubMed ID: 34420718 [TBL] [Abstract][Full Text] [Related]
11. In vitro and in vivo acute response towards injectable thermosensitive chitosan/TEMPO-oxidized cellulose nanofiber hydrogel. Nguyen THM; Abueva C; Ho HV; Lee SY; Lee BT Carbohydr Polym; 2018 Jan; 180():246-255. PubMed ID: 29103503 [TBL] [Abstract][Full Text] [Related]
12. Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP. Lindqvist J; Nyström D; Ostmark E; Antoni P; Carlmark A; Johansson M; Hult A; Malmström E Biomacromolecules; 2008 Aug; 9(8):2139-45. PubMed ID: 18636775 [TBL] [Abstract][Full Text] [Related]
13. Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. Liu P; Oksman K; Mathew AP J Colloid Interface Sci; 2016 Feb; 464():175-82. PubMed ID: 26619127 [TBL] [Abstract][Full Text] [Related]
14. Control of Protein Affinity of Bioactive Nanocellulose and Passivation Using Engineered Block and Random Copolymers. Vuoriluoto M; Orelma H; Zhu B; Johansson LS; Rojas OJ ACS Appl Mater Interfaces; 2016 Mar; 8(8):5668-78. PubMed ID: 26844956 [TBL] [Abstract][Full Text] [Related]
15. In Situ Generation of Cellulose Nanocrystals in Polycaprolactone Nanofibers: Effects on Crystallinity, Mechanical Strength, Biocompatibility, and Biomimetic Mineralization. Joshi MK; Tiwari AP; Pant HR; Shrestha BK; Kim HJ; Park CH; Kim CS ACS Appl Mater Interfaces; 2015 Sep; 7(35):19672-83. PubMed ID: 26295953 [TBL] [Abstract][Full Text] [Related]
16. A thermosensitive drug delivery system prepared by blend electrospinning. Li H; Liu K; Sang Q; Williams GR; Wu J; Wang H; Wu J; Zhu LM Colloids Surf B Biointerfaces; 2017 Nov; 159():277-283. PubMed ID: 28802202 [TBL] [Abstract][Full Text] [Related]
18. Thermo-/pH-dual responsive properties of hyperbranched polyethylenimine grafted by phenylalanine. Chen J; Xia J; Tian H; Tang Z; He C; Chen X Arch Pharm Res; 2014 Jan; 37(1):142-8. PubMed ID: 24263409 [TBL] [Abstract][Full Text] [Related]
19. Electrospun Poly(N-isopropylacrylamide)/Ethyl Cellulose Nanofibers as Thermoresponsive Drug Delivery Systems. Hu J; Li HY; Williams GR; Yang HH; Tao L; Zhu LM J Pharm Sci; 2016 Mar; 105(3):1104-12. PubMed ID: 26886332 [TBL] [Abstract][Full Text] [Related]
20. Nacre-inspired cellulose nanofiber/MXene flexible composite film with mechanical robustness for humidity sensing. Han M; Shen W Carbohydr Polym; 2022 Dec; 298():120109. PubMed ID: 36241326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]