These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 32559379)
1. Formation, Physicochemical Stability, and Redispersibility of Curcumin-Loaded Rhamnolipid Nanoparticles Using the pH-Driven Method. Ma Y; Chen S; Liao W; Zhang L; Liu J; Gao Y J Agric Food Chem; 2020 Jul; 68(27):7103-7111. PubMed ID: 32559379 [TBL] [Abstract][Full Text] [Related]
2. Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Peng S; Li Z; Zou L; Liu W; Liu C; McClements DJ Food Funct; 2018 Mar; 9(3):1829-1839. PubMed ID: 29517797 [TBL] [Abstract][Full Text] [Related]
3. Loading natural emulsions with nutraceuticals using the pH-driven method: formation & stability of curcumin-loaded soybean oil bodies. Zheng B; Zhang X; Lin H; McClements DJ Food Funct; 2019 Sep; 10(9):5473-5484. PubMed ID: 31410431 [TBL] [Abstract][Full Text] [Related]
4. Preparation of ultra-long stable ovalbumin/sodium carboxymethylcellulose nanoparticle and loading properties of curcumin. Niu F; Hu D; Gu F; Du Y; Zhang B; Ma S; Pan W Carbohydr Polym; 2021 Nov; 271():118451. PubMed ID: 34364584 [TBL] [Abstract][Full Text] [Related]
5. One-step self-assembly of curcumin-loaded zein/sophorolipid nanoparticles: physicochemical stability, redispersibility, solubility and bioaccessibility. Yuan Y; Huang J; He S; Ma M; Wang D; Xu Y Food Funct; 2021 Jul; 12(13):5719-5730. PubMed ID: 34115089 [TBL] [Abstract][Full Text] [Related]
6. Core-Shell Biopolymer Nanoparticles for Co-Delivery of Curcumin and Piperine: Sequential Electrostatic Deposition of Hyaluronic Acid and Chitosan Shells on the Zein Core. Chen S; McClements DJ; Jian L; Han Y; Dai L; Mao L; Gao Y ACS Appl Mater Interfaces; 2019 Oct; 11(41):38103-38115. PubMed ID: 31509373 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin. Weng Q; Cai X; Zhang F; Wang S Food Chem; 2019 Feb; 274():796-802. PubMed ID: 30373011 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and characterization of novel TGase-mediated glycosylated whey protein isolate nanoparticles for curcumin delivery. Li D; Jiang Y; Shi J Food Chem; 2024 Dec; 461():140957. PubMed ID: 39182336 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of soy protein isolate/cellulose nanocrystal composite nanoparticles for curcumin delivery. Wang S; Lu Y; Ouyang XK; Ling J Int J Biol Macromol; 2020 Dec; 165(Pt A):1468-1474. PubMed ID: 33058971 [TBL] [Abstract][Full Text] [Related]
10. Formation, stability and in vitro digestion of curcumin loaded whey protein/ hyaluronic acid nanoparticles: Ethanol desolvation vs. pH-shifting method. Zhong W; Li J; Wang C; Zhang T Food Chem; 2023 Jul; 414():135684. PubMed ID: 36809722 [TBL] [Abstract][Full Text] [Related]
11. Curcumin-loaded core-shell biopolymer nanoparticles produced by the pH-driven method: Physicochemical and release properties. Li Z; Lin Q; McClements DJ; Fu Y; Xie H; Li T; Chen G Food Chem; 2021 Sep; 355():129686. PubMed ID: 33799264 [TBL] [Abstract][Full Text] [Related]
12. [Preparation and physiochemical properties of curcumin-loaded lipid cubic liquid crystalline nanoparticles]. Su X; He XL; Liu XJ; Guo JY; Zhai GX Zhong Yao Cai; 2012 Feb; 35(2):296-9. PubMed ID: 22822677 [TBL] [Abstract][Full Text] [Related]
13. Preparation and characterization of zein/carboxymethyl dextrin nanoparticles to encapsulate curcumin: Physicochemical stability, antioxidant activity and controlled release properties. Meng R; Wu Z; Xie QT; Cheng JS; Zhang B Food Chem; 2021 Mar; 340():127893. PubMed ID: 32889202 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of Polydopamine-Based Curcumin Nanoparticles for Chemical Stability and pH-Responsive Delivery. Pan H; Shen X; Tao W; Chen S; Ye X J Agric Food Chem; 2020 Mar; 68(9):2795-2802. PubMed ID: 32031786 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid-Coated Nanoparticles: An in Vitro and in Vivo Study. Peng S; Li Z; Zou L; Liu W; Liu C; McClements DJ J Agric Food Chem; 2018 Feb; 66(6):1488-1497. PubMed ID: 29378117 [TBL] [Abstract][Full Text] [Related]
16. Impact of Delivery System Type on Curcumin Bioaccessibility: Comparison of Curcumin-Loaded Nanoemulsions with Commercial Curcumin Supplements. Zheng B; Peng S; Zhang X; McClements DJ J Agric Food Chem; 2018 Oct; 66(41):10816-10826. PubMed ID: 30252460 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of zein-caseinate-pectin complex nanoparticles for encapsulation of curcumin: pectin extracted by high-speed shearing from passion fruit (Passiflora edulis f. flavicarpa) peel. Li X; Lin Y; Huang Y; Li X; An F; Song H; Huang Q J Sci Food Agric; 2024 Aug; 104(11):6573-6583. PubMed ID: 38520286 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and characterization of folate decorated albumin bio-conjugate nanoparticles loaded with a synthetic curcumin difluorinated analogue. Gawde KA; Kesharwani P; Sau S; Sarkar FH; Padhye S; Kashaw SK; Iyer AK J Colloid Interface Sci; 2017 Jun; 496():290-299. PubMed ID: 28236692 [TBL] [Abstract][Full Text] [Related]
19. Improved Chemical Stability and Antiproliferative Activities of Curcumin-Loaded Nanoparticles with a Chitosan Chlorogenic Acid Conjugate. Fan Y; Yi J; Zhang Y; Yokoyama W J Agric Food Chem; 2017 Dec; 65(49):10812-10819. PubMed ID: 29155582 [TBL] [Abstract][Full Text] [Related]
20. Cost-effective alternative to nano-encapsulation: Amorphous curcumin-chitosan nanoparticle complex exhibiting high payload and supersaturation generation. Nguyen MH; Yu H; Kiew TY; Hadinoto K Eur J Pharm Biopharm; 2015 Oct; 96():1-10. PubMed ID: 26170159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]