These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 32559609)

  • 41. Topic Model for Graph Mining.
    Xuan J; Lu J; Zhang G; Luo X
    IEEE Trans Cybern; 2015 Dec; 45(12):2792-803. PubMed ID: 25616091
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evolving knowledge graph similarity for supervised learning in complex biomedical domains.
    Sousa RT; Silva S; Pesquita C
    BMC Bioinformatics; 2020 Jan; 21(1):6. PubMed ID: 31900127
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deep Learning for Dynamic Graphs: Models and Benchmarks.
    Gravina A; Bacciu D
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):11788-11801. PubMed ID: 38568760
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks.
    Karimi M; Wu D; Wang Z; Shen Y
    Bioinformatics; 2019 Sep; 35(18):3329-3338. PubMed ID: 30768156
    [TBL] [Abstract][Full Text] [Related]  

  • 45. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Learning Hyperedge Replacement Grammars for Graph Generation.
    Aguinaga S; Chiang D; Weninger T
    IEEE Trans Pattern Anal Mach Intell; 2019 Mar; 41(3):625-638. PubMed ID: 29994579
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Learning image-based spatial transformations via convolutional neural networks: A review.
    Tustison NJ; Avants BB; Gee JC
    Magn Reson Imaging; 2019 Dec; 64():142-153. PubMed ID: 31200026
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Review of biomedical knowledge and data representation with conceptual graphs.
    Volot F; Joubert M; Fieschi M
    Methods Inf Med; 1998 Jan; 37(1):86-96. PubMed ID: 9550852
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A deep learning approach to bilingual lexicon induction in the biomedical domain.
    Heyman G; Vulić I; Moens MF
    BMC Bioinformatics; 2018 Jul; 19(1):259. PubMed ID: 29986664
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Scholarly knowledge graphs through structuring scholarly communication: a review.
    Verma S; Bhatia R; Harit S; Batish S
    Complex Intell Systems; 2023; 9(1):1059-1095. PubMed ID: 35965491
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif.
    Hirohara M; Saito Y; Koda Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):526. PubMed ID: 30598075
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ear Detection Using Convolutional Neural Network on Graphs with Filter Rotation.
    Tomczyk A; Szczepaniak PS
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31847162
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Method to Learn Embedding of a Probabilistic Medical Knowledge Graph: Algorithm Development.
    Li L; Wang P; Wang Y; Wang S; Yan J; Jiang J; Tang B; Wang C; Liu Y
    JMIR Med Inform; 2020 May; 8(5):e17645. PubMed ID: 32436854
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multi-View Multi-Instance Learning Based on Joint Sparse Representation and Multi-View Dictionary Learning.
    Li B; Yuan C; Xiong W; Hu W; Peng H; Ding X; Maybank S
    IEEE Trans Pattern Anal Mach Intell; 2017 Dec; 39(12):2554-2560. PubMed ID: 28212079
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neural network for graphs: a contextual constructive approach.
    Micheli A
    IEEE Trans Neural Netw; 2009 Mar; 20(3):498-511. PubMed ID: 19193509
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deep learning and deep knowledge representation in Spiking Neural Networks for Brain-Computer Interfaces.
    Kumarasinghe K; Kasabov N; Taylor D
    Neural Netw; 2020 Jan; 121():169-185. PubMed ID: 31568895
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel deep neural network based pattern field classification architectures.
    Huang K; Zhang S; Zhang R; Hussain A
    Neural Netw; 2020 Jul; 127():82-95. PubMed ID: 32344155
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemical-induced disease extraction via recurrent piecewise convolutional neural networks.
    Li H; Yang M; Chen Q; Tang B; Wang X; Yan J
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):60. PubMed ID: 30066652
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Clinical Named Entity Recognition Using Deep Learning Models.
    Wu Y; Jiang M; Xu J; Zhi D; Xu H
    AMIA Annu Symp Proc; 2017; 2017():1812-1819. PubMed ID: 29854252
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Could deep learning in neural networks improve the QSAR models?
    Gini G; Zanoli F; Gamba A; Raitano G; Benfenati E
    SAR QSAR Environ Res; 2019 Sep; 30(9):617-642. PubMed ID: 31460798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.