BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 32559688)

  • 1. Nanotechnology in soil remediation - applications vs. implications.
    Qian Y; Qin C; Chen M; Lin S
    Ecotoxicol Environ Saf; 2020 Sep; 201():110815. PubMed ID: 32559688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecofriendly nanotechnologies and nanomaterials for environmental applications: Key issue and consensus recommendations for sustainable and ecosafe nanoremediation.
    Corsi I; Winther-Nielsen M; Sethi R; Punta C; Della Torre C; Libralato G; Lofrano G; Sabatini L; Aiello M; Fiordi L; Cinuzzi F; Caneschi A; Pellegrini D; Buttino I
    Ecotoxicol Environ Saf; 2018 Jun; 154():237-244. PubMed ID: 29476973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotoxicity of engineered nanomaterials (ENMs) to environmentally relevant beneficial soil bacteria - a critical review.
    Lewis RW; Bertsch PM; McNear DH
    Nanotoxicology; 2019 Apr; 13(3):392-428. PubMed ID: 30760121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different Nanomaterials for Soil Remediation Affect Avoidance Response and Toxicity Response in Earthworm (Eisenia fetida).
    Liu Y; Xu K; Cheng J
    Bull Environ Contam Toxicol; 2020 Apr; 104(4):477-483. PubMed ID: 32193572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent trends in nanomaterials applications in environmental monitoring and remediation.
    Das S; Sen B; Debnath N
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18333-44. PubMed ID: 26490920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanotechnology for Environmental Remediation: Materials and Applications.
    Guerra FD; Attia MF; Whitehead DC; Alexis F
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30021974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotechnologies for environmental remediation and their ecotoxicological impacts.
    Ejaz M; Gul A; Ozturk M; Hafeez A; Turkyilmaz Unal B; Jan SU; Siddique MT
    Environ Monit Assess; 2023 Oct; 195(11):1368. PubMed ID: 37875634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental behaviors and toxic mechanisms of engineered nanomaterials in soil.
    Wang C; Chen L; Xu J; Zhang L; Yang X; Zhang X; Zhang C; Gao P; Zhu L
    Environ Res; 2024 Feb; 242():117820. PubMed ID: 38048867
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotechnology and in situ remediation: a review of the benefits and potential risks.
    Karn B; Kuiken T; Otto M
    Environ Health Perspect; 2009 Dec; 117(12):1813-31. PubMed ID: 20049198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and remediation of pollutants to maintain ecosustainability employing nanotechnology: A review.
    Yadav N; Garg VK; Chhillar AK; Rana JS
    Chemosphere; 2021 Oct; 280():130792. PubMed ID: 34162093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotechnology for the Environment and Medicine.
    Formoso P; Muzzalupo R; Tavano L; De Filpo G; Nicoletta FP
    Mini Rev Med Chem; 2016; 16(8):668-75. PubMed ID: 26955878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lessons learned: Are engineered nanomaterials toxic to terrestrial plants?
    Reddy PVL; Hernandez-Viezcas JA; Peralta-Videa JR; Gardea-Torresdey JL
    Sci Total Environ; 2016 Oct; 568():470-479. PubMed ID: 27314900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of surfactants for the remediation of contaminated soils: a review.
    Mao X; Jiang R; Xiao W; Yu J
    J Hazard Mater; 2015 Mar; 285():419-35. PubMed ID: 25528485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China.
    He L; Zhong H; Liu G; Dai Z; Brookes PC; Xu J
    Environ Pollut; 2019 Sep; 252(Pt A):846-855. PubMed ID: 31202137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal oxide nanomaterials used to remediate heavy metal contaminated soils have strong effects on nutrient and trace element phytoavailability.
    Duncan E; Owens G
    Sci Total Environ; 2019 Aug; 678():430-437. PubMed ID: 31077921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation of contaminated soils by biotechnology with nanomaterials: bio-behavior, applications, and perspectives.
    Gong X; Huang D; Liu Y; Peng Z; Zeng G; Xu P; Cheng M; Wang R; Wan J
    Crit Rev Biotechnol; 2018 May; 38(3):455-468. PubMed ID: 28903604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions.
    Kuppusamy S; Thavamani P; Venkateswarlu K; Lee YB; Naidu R; Megharaj M
    Chemosphere; 2017 Feb; 168():944-968. PubMed ID: 27823779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental applications and risks of engineered nanomaterials in removing petroleum oil in soil.
    Gao Y; Zhou L; Ouyang S; Sun J; Zhou Q
    Sci Total Environ; 2024 Jun; 946():174165. PubMed ID: 38925379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanotechnology in remediation of water contaminated by poly- and perfluoroalkyl substances: A review.
    Zhang W; Zhang D; Liang Y
    Environ Pollut; 2019 Apr; 247():266-276. PubMed ID: 30685667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ remediation technologies for mercury-contaminated soil.
    He F; Gao J; Pierce E; Strong PJ; Wang H; Liang L
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8124-47. PubMed ID: 25850737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.