These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32559857)

  • 1. The possible routes of microplastics uptake in sea cucumber Holothuria cinerascens (Brandt, 1835).
    Iwalaye OA; Moodley GK; Robertson-Andersson DV
    Environ Pollut; 2020 Sep; 264():114644. PubMed ID: 32559857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microplastic ingestion by the farmed sea cucumber Apostichopus japonicus in China.
    Mohsen M; Wang Q; Zhang L; Sun L; Lin C; Yang H
    Environ Pollut; 2019 Feb; 245():1071-1078. PubMed ID: 30682741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sea cucumber Holothuria tubulosa does not reduce the size of microplastics but enhances their resuspension in the water column.
    Bulleri F; Ravaglioli C; Anselmi S; Renzi M
    Sci Total Environ; 2021 Aug; 781():146650. PubMed ID: 33798890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microplastic fibers transfer from the water to the internal fluid of the sea cucumber Apostichopus japonicus.
    Mohsen M; Zhang L; Sun L; Lin C; Wang Q; Yang H
    Environ Pollut; 2020 Feb; 257():113606. PubMed ID: 31761598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism underlying the toxicity of the microplastic fibre transfer in the sea cucumber Apostichopus japonicus.
    Mohsen M; Sun L; Lin C; Huo D; Yang H
    J Hazard Mater; 2021 Aug; 416():125858. PubMed ID: 34492807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microplastics in sandy environments in the Florida Keys and the panhandle of Florida, and the ingestion by sea cucumbers (Echinodermata: Holothuroidea) and sand dollars (Echinodermata: Echinoidea).
    Plee TA; Pomory CM
    Mar Pollut Bull; 2020 Sep; 158():111437. PubMed ID: 32753220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate of Microplastic Fibers in the Coelomic Fluid of the Sea Cucumber Apostichopus japonicus.
    Mohsen M; Chenggang L; Sui Y; Yang H
    Environ Toxicol Chem; 2023 Jan; 42(1):205-212. PubMed ID: 36345956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments.
    Woodall LC; Gwinnett C; Packer M; Thompson RC; Robinson LF; Paterson GL
    Mar Pollut Bull; 2015 Jun; 95(1):40-6. PubMed ID: 25936572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sampling microfibres at the sea surface: The effects of mesh size, sample volume and water depth.
    Ryan PG; Suaria G; Perold V; Pierucci A; Bornman TG; Aliani S
    Environ Pollut; 2020 Mar; 258():113413. PubMed ID: 31862120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chronic exposure to microplastic fibre ingestion in the sea cucumber Apostichopus japonicus.
    Mohsen M; Zhang L; Sun L; Lin C; Wang Q; Liu S; Sun J; Yang H
    Ecotoxicol Environ Saf; 2021 Feb; 209():111794. PubMed ID: 33348256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean.
    Courtene-Jones W; Quinn B; Gary SF; Mogg AOM; Narayanaswamy BE
    Environ Pollut; 2017 Dec; 231(Pt 1):271-280. PubMed ID: 28806692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Post-autotomy regeneration of respiratory tree in sea cucumber Holothuria parva.
    Eisapour M; Salamat N; Salari MA; Bahabadi MN; Salati AP
    J Exp Zool B Mol Dev Evol; 2022 May; 338(3):155-169. PubMed ID: 34813182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating microplastic-bound intake of hydrophobic organic chemicals by fish using measured desorption rates to artificial gut fluid.
    Lee H; Lee HJ; Kwon JH
    Sci Total Environ; 2019 Feb; 651(Pt 1):162-170. PubMed ID: 30227286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of microplastics ingested by sea cucumber Stichopus horrens in Pulau Pangkor, Perak, Malaysia.
    Muhammad Husin MJ; Mazlan N; Shalom J; Saud SN; Abdullah Sani MS
    Environ Sci Pollut Res Int; 2021 Nov; 28(43):61592-61600. PubMed ID: 34181157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microplastic ingestion by the sandfish Holothuria scabra in Lampung and Sumbawa, Indonesia.
    Riani E; Cordova MR
    Mar Pollut Bull; 2022 Feb; 175():113134. PubMed ID: 34823866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microplastics in mussels and fish from the Northern Ionian Sea.
    Digka N; Tsangaris C; Torre M; Anastasopoulou A; Zeri C
    Mar Pollut Bull; 2018 Oct; 135():30-40. PubMed ID: 30301041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microplastic ingestion and egestion by copepods in the Black Sea.
    Aytan U; Esensoy FB; Senturk Y
    Sci Total Environ; 2022 Feb; 806(Pt 4):150921. PubMed ID: 34653472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Existence of microplastics in the edible part of the sea cucumber Apostichopus japonicus.
    Mohsen M; Lin C; Liu S; Yang H
    Chemosphere; 2022 Jan; 287(Pt 1):132062. PubMed ID: 34526273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Man-made natural and regenerated cellulosic fibres greatly outnumber microplastic fibres in the atmosphere.
    Finnegan AMD; Süsserott R; Gabbott SE; Gouramanis C
    Environ Pollut; 2022 Oct; 310():119808. PubMed ID: 35926740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microplastic ingestion in deep-sea fish from the South China Sea.
    Zhu L; Wang H; Chen B; Sun X; Qu K; Xia B
    Sci Total Environ; 2019 Aug; 677():493-501. PubMed ID: 31063892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.