These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 32559864)
21. Remediation of Cr(VI) contaminated soil by chitosan stabilized FeS composite and the changes in microorganism community. Shang C; Chai Y; Peng L; Shao J; Huang H; Chen A Chemosphere; 2023 Jun; 327():138517. PubMed ID: 36972868 [TBL] [Abstract][Full Text] [Related]
22. Remediation of Cr(VI)-contaminated soil using combined chemical leaching and reduction techniques based on hexavalent chromium speciation. Wang D; Li G; Qin S; Tao W; Gong S; Wang J Ecotoxicol Environ Saf; 2021 Jan; 208():111734. PubMed ID: 33396063 [TBL] [Abstract][Full Text] [Related]
23. Pyrolytic production of zerovalent iron nanoparticles supported on rice husk-derived biochar: simple, in situ synthesis and use for remediation of Cr(VI)-polluted soils. Liu X; Yang L; Zhao H; Wang W Sci Total Environ; 2020 Mar; 708():134479. PubMed ID: 31796288 [TBL] [Abstract][Full Text] [Related]
24. Enhanced remediation of Cr(VI)-contaminated soil by modified zero-valent iron with oxalic acid on biochar. Xie L; Chen Q; Liu Y; Ma Q; Zhang J; Tang C; Duan G; Lin A; Zhang T; Li S Sci Total Environ; 2023 Dec; 905():167399. PubMed ID: 37793443 [TBL] [Abstract][Full Text] [Related]
25. Simultaneous reduction and immobilization of Cr(VI) in seasonally frozen areas: Remediation mechanisms and the role of ageing. Hou R; Wang L; Shen Z; Alessi DS; Hou D J Hazard Mater; 2021 Aug; 415():125650. PubMed ID: 34088176 [TBL] [Abstract][Full Text] [Related]
26. Use of Nanoscale Zero-Valent Iron for Remediation of Clayey Soil Contaminated with Hexavalent Chromium: Batch and Column Tests. Reginatto C; Cecchin I; Heineck KS; Reddy KR; Thomé A Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32033384 [TBL] [Abstract][Full Text] [Related]
27. Remediation of Cr(VI)-contaminated soil by combined chemical reduction and microbial stabilization: The role of biogas solid residue (BSR). Gao Y; Wang H; Xu R; Wang YN; Sun Y; Bian R; Li W Ecotoxicol Environ Saf; 2022 Feb; 231():113198. PubMed ID: 35033874 [TBL] [Abstract][Full Text] [Related]
28. Mechanochemical treatment of Cr(VI) contaminated soil using a sodium sulfide coupled solidification/stabilization process. Yuan W; Xu W; Wu Z; Zhang Z; Wang L; Bai J; Wang X; Zhang Q; Zhu X; Zhang C; Wang J Chemosphere; 2018 Dec; 212():540-547. PubMed ID: 30165280 [TBL] [Abstract][Full Text] [Related]
29. Coupling electrokinetic remediation with flushing using green tea synthesized nano zero-valent iron/nickel to remediate Cr (VI). Zhu F; Yang Y; Ren W; Iribagiza RM; Wang W Environ Geochem Health; 2023 Dec; 45(12):9691-9707. PubMed ID: 37812370 [TBL] [Abstract][Full Text] [Related]
30. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness. Liu Y; Mou H; Chen L; Mirza ZA; Liu L J Hazard Mater; 2015 Nov; 298():83-90. PubMed ID: 26026959 [TBL] [Abstract][Full Text] [Related]
31. Transport of nZVI/copper synthesized by green tea extract in Cr(IV)-contaminated soil: modeling study and reduced toxicity. Zhu F; Li T; Liu J Environ Sci Pollut Res Int; 2024 Mar; 31(13):20499-20509. PubMed ID: 38374508 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of Calcium Polysulfide as a Reducing Agent for the Restoration of a Cr(VI)-Contaminated Aquifer. Mpouras T; Papassiopi N; Lagkouvardos K; Mystrioti C; Dermatas D Bull Environ Contam Toxicol; 2021 Mar; 106(3):435-440. PubMed ID: 32462246 [TBL] [Abstract][Full Text] [Related]
33. Microwave-enhanced reductive immobilization of high concentrations of chromium in a field soil using iron polysulfide. Wang J; Liu X; Zhu Z; Yuan L; Zhao D; Deng H; Lin Z J Hazard Mater; 2021 Sep; 418():126293. PubMed ID: 34118547 [TBL] [Abstract][Full Text] [Related]
34. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Lyu H; Zhao H; Tang J; Gong Y; Huang Y; Wu Q; Gao B Chemosphere; 2018 Mar; 194():360-369. PubMed ID: 29223115 [TBL] [Abstract][Full Text] [Related]
35. Effects of the application of an organic amendment and nanoscale zero-valent iron particles on soil Cr(VI) remediation. Lacalle RG; Garbisu C; Becerril JM Environ Sci Pollut Res Int; 2020 Sep; 27(25):31726-31736. PubMed ID: 32504423 [TBL] [Abstract][Full Text] [Related]
36. Characteristics and long-term effects of stabilized nanoscale ferrous sulfide immobilized hexavalent chromium in soil. Li X; He X; Wang H; Liu Y J Hazard Mater; 2020 May; 389():122089. PubMed ID: 31978819 [TBL] [Abstract][Full Text] [Related]
37. Remediation of Cr(VI)-Contaminated Soil Using the Acidified Hydrazine Hydrate. Ma Y; Li F; Jiang Y; Yang W; Lv L; Xue H; Wang Y Bull Environ Contam Toxicol; 2016 Sep; 97(3):392-4. PubMed ID: 27351195 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of remediation of Cr(VI)-contaminated soils by calcium polysulfide: Long-term stabilization and mechanism studies. Hu S; Li D; Man Y; Wen Y; Huang C Sci Total Environ; 2021 Oct; 790():148140. PubMed ID: 34102445 [TBL] [Abstract][Full Text] [Related]
39. Application of iron-biochar composite in topsoil for simultaneous remediation of chromium-contaminated soil and groundwater: Immobilization mechanism and long-term stability. Chen X; Dai Y; Fan J; Xu X; Cao X J Hazard Mater; 2021 Mar; 405():124226. PubMed ID: 33087289 [TBL] [Abstract][Full Text] [Related]
40. Reduction and stabilization of Cr(VI) in soil by using calcium polysulfide: Catalysis of natural iron oxides. Zhang T; Wang T; Wang W; Liu B; Li W; Liu Y Environ Res; 2020 Nov; 190():109992. PubMed ID: 32763276 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]