These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 32559923)
21. Solidification/stabilization of municipal solid waste incineration fly ash using uncalcined coal gangue-based alkali-activated cementitious materials. Zhao S; Muhammad F; Yu L; Xia M; Huang X; Jiao B; Lu N; Li D Environ Sci Pollut Res Int; 2019 Sep; 26(25):25609-25620. PubMed ID: 31267393 [TBL] [Abstract][Full Text] [Related]
22. Deep eutectic solvent as an efficient modifier of low-cost adsorbent for the removal of pharmaceuticals and dye. Lawal IA; Klink M; Ndungu P Environ Res; 2019 Dec; 179(Pt B):108837. PubMed ID: 31678732 [TBL] [Abstract][Full Text] [Related]
23. Arsenic removal from water using a novel amorphous adsorbent developed from coal fly ash. Zhang K; Zhang D; Zhang K Water Sci Technol; 2016; 73(8):1954-62. PubMed ID: 27120650 [TBL] [Abstract][Full Text] [Related]
24. H Wu H; Zhu Y; Bian S; Ko JH; Li SFY; Xu Q Chemosphere; 2018 Mar; 195():40-47. PubMed ID: 29253788 [TBL] [Abstract][Full Text] [Related]
25. Mustard plant ash: a source of micronutrient and an adsorbent for removal of 2,4-dichlorophenoxyacetic acid. Trivedi NS; Mandavgane SA; Kulkarni BD Environ Sci Pollut Res Int; 2016 Oct; 23(20):20087-20099. PubMed ID: 26884245 [TBL] [Abstract][Full Text] [Related]
26. Eco-Friendly Materials Obtained by Fly Ash Sulphuric Activation for Cadmium Ions Removal. Buema G; Lupu N; Chiriac H; Roman T; Porcescu M; Ciobanu G; Burghila DV; Harja M Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32823715 [TBL] [Abstract][Full Text] [Related]
27. Comparative study on efficiency of surface enhanced coal fly ash and raw coal fly ash for the removal of hazardous dyes in wastewater: optimization through response surface methodology. Nadeem H; Jamil F; Iqbal MA; Nee TW; Kashif M; Ibrahim AH; Al-Rawi SS; Zia SU; Shoukat US; Kanwal R; Ahmad F; Khalid S; Rehman MT RSC Adv; 2024 Jul; 14(31):22312-22325. PubMed ID: 39010920 [TBL] [Abstract][Full Text] [Related]
28. Novel Adsorbent Based on Banana Peel Waste for Removal of Heavy Metal Ions from Synthetic Solutions. Negroiu M; Țurcanu AA; Matei E; Râpă M; Covaliu CI; Predescu AM; Pantilimon CM; Coman G; Predescu C Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300861 [TBL] [Abstract][Full Text] [Related]
29. Synthesis of ZIF-8/Fly Ash Composite for Adsorption of Cu Wang C; Yang R; Wang H Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947930 [TBL] [Abstract][Full Text] [Related]
30. The use of X-ray fluorescence (XRF) analysis in predicting the alkaline hydrothermal conversion of fly ash precipitates into zeolites. Somerset VS; Petrik LF; White RA; Klink MJ; Key D; Iwuoha E Talanta; 2004 Sep; 64(1):109-14. PubMed ID: 18969574 [TBL] [Abstract][Full Text] [Related]
31. Adsorption/reduction of Hg(II) and Pb(II) from aqueous solutions by using bone ash/nZVI composite: effects of aging time, Fe loading quantity and co-existing ions. Gil A; Amiri MJ; Abedi-Koupai J; Eslamian S Environ Sci Pollut Res Int; 2018 Jan; 25(3):2814-2829. PubMed ID: 29143259 [TBL] [Abstract][Full Text] [Related]
32. Application of Activated Carbon Banana Peel Coated with Al Ramutshatsha-Makhwedzha D; Mbaya R; Mavhungu ML Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160814 [TBL] [Abstract][Full Text] [Related]
33. Copper Ion Removal by Adsorption Using Fly Ash-Based Geopolymers: Process Optimization Insights from Taguchi and ANOVA Statistical Methods. Litu L; Buema G; Mosoarca G; Harja M Materials (Basel); 2024 Aug; 17(16):. PubMed ID: 39203169 [TBL] [Abstract][Full Text] [Related]
34. A novel approach to preparation of nano-adsorbent from agricultural wastes (Saccharum officinarum leaves) and its environmental application. Kaliannan D; Palaninaicker S; Palanivel V; Mahadeo MA; Ravindra BN; Jae-Jin S Environ Sci Pollut Res Int; 2019 Feb; 26(6):5305-5314. PubMed ID: 30446914 [TBL] [Abstract][Full Text] [Related]
35. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater. Wang S; Soudi M; Li L; Zhu ZH J Hazard Mater; 2006 May; 133(1-3):243-51. PubMed ID: 16310947 [TBL] [Abstract][Full Text] [Related]
36. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Chowdhury S; Balasubramanian R Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086 [TBL] [Abstract][Full Text] [Related]
37. Removal of heavy metals from fly ash leachate using combined bioelectrochemical systems and electrolysis. Tao HC; Lei T; Shi G; Sun XN; Wei XY; Zhang LJ; Wu WM J Hazard Mater; 2014 Jan; 264():1-7. PubMed ID: 24269969 [TBL] [Abstract][Full Text] [Related]
38. Calcined Corncob-Kaolinite Combo as New Sorbent for Sequestration of Toxic Metal Ions From Polluted Aqua Media and Desorption. Chukwuemeka-Okorie HO; Ekemezie PN; Akpomie KG; Olikagu CS Front Chem; 2018; 6():273. PubMed ID: 30023357 [TBL] [Abstract][Full Text] [Related]
39. Properties of MSW fly ash-calcium sulfoaluminate cement matrix and stabilization/solidification on heavy metals. Qian GR; Shi J; Cao YL; Xu YF; Chui PC J Hazard Mater; 2008 Mar; 152(1):196-203. PubMed ID: 17728061 [TBL] [Abstract][Full Text] [Related]
40. [Leaching Toxicity and Bioaccessibility of Heavy Metals in MSWI Fly Ash with Various Particle Sizes]. Wang CF; Chen GF; Zhu YC; Yao D; Huang XC; Wang LJ Huan Jing Ke Xue; 2016 Dec; 37(12):4891-4898. PubMed ID: 29965333 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]