These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32559992)

  • 1. An artificial neural network approach for the estimation of the primary production of energy from municipal solid waste and its application to the Balkan countries.
    Adamović VM; Antanasijević DZ; Ćosović AR; Ristić MĐ; Pocajt VV
    Waste Manag; 2018 Aug; 78():955-968. PubMed ID: 32559992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of coal alternative fuel from municipal solid wastes employing hydrothermal carbonization on atmospheric pollutant emissions in Zimbabwe.
    Maqhuzu AB; Yoshikawa K; Takahashi F
    Sci Total Environ; 2019 Jun; 668():743-759. PubMed ID: 30865905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review on technological options of waste to energy for effective management of municipal solid waste.
    Kumar A; Samadder SR
    Waste Manag; 2017 Nov; 69():407-422. PubMed ID: 28886975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stepwise multiple regression method of greenhouse gas emission modeling in the energy sector in Poland.
    Kolasa-Wiecek A
    J Environ Sci (China); 2015 Apr; 30():47-54. PubMed ID: 25872708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste.
    Laryea-Goldsmith R; Oakey J; Simms NJ
    Chem Cent J; 2011 Feb; 5():4. PubMed ID: 21284885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential of municipal solid waste for renewable energy production and reduction of greenhouse gas emissions in South Korea.
    Ryu C
    J Air Waste Manag Assoc; 2010 Feb; 60(2):176-83. PubMed ID: 20222530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.
    Gug J; Cacciola D; Sobkowicz MJ
    Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of MRF residue as alternative fuel in cement production.
    Fyffe JR; Breckel AC; Townsend AK; Webber ME
    Waste Manag; 2016 Jan; 47(Pt B):276-84. PubMed ID: 26187294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renewable energy and greenhouse gas emissions from the waste sectors of European Union member states: a panel data analysis.
    Domingos HA; De Melo Faria AM; Fuinhas JA; Marques AC
    Environ Sci Pollut Res Int; 2017 Aug; 24(23):18770-18781. PubMed ID: 28620854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effectiveness of municipal solid waste incinerators in replacing other fuels. A primary energy balance approach for the EU28.
    Di Maria F; Sisani F
    Waste Manag Res; 2018 Oct; 36(10):942-951. PubMed ID: 30044198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How should greenhouse gas emissions be taken into account in the decision making of municipal solid waste management procurements? A case study of the South Karelia region, Finland.
    Hupponen M; Grönman K; Horttanainen M
    Waste Manag; 2015 Aug; 42():196-207. PubMed ID: 25936556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-combustion of coal processing waste, oil refining waste and municipal solid waste: Mechanism, characteristics, emissions.
    Glushkov DO; Paushkina KK; Shabardin DP
    Chemosphere; 2020 Feb; 240():124892. PubMed ID: 31546192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greenhouse gas emissions from different municipal solid waste management scenarios in China: Based on carbon and energy flow analysis.
    Liu Y; Sun W; Liu J
    Waste Manag; 2017 Oct; 68():653-661. PubMed ID: 28642075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Greenhouse gas contribution of municipal solid waste collection: A case study in the city of Istanbul, Turkey.
    Korkut NE; Yaman C; Küçükağa Y; Jaunich MK; Demir İ
    Waste Manag Res; 2018 Feb; 36(2):131-139. PubMed ID: 29228879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Municipal solid waste recycling by burning it as part of composite fuel with energy generation.
    Glushkov D; Paushkina K; Shabardin D; Strizhak P; Gutareva N
    J Environ Manage; 2019 Feb; 231():896-904. PubMed ID: 30423544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Greenhouse gases emission from municipal waste management: The role of separate collection.
    Calabrò PS
    Waste Manag; 2009 Jul; 29(7):2178-87. PubMed ID: 19318239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.
    Toshiki K; Giang PQ; Serrona KR; Sekikawa T; Yu JS; Choijil B; Kunikane S
    J Environ Sci (China); 2015 Feb; 28():178-86. PubMed ID: 25662253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran.
    Azadi S; Karimi-Jashni A
    Waste Manag; 2016 Feb; 48():14-23. PubMed ID: 26482809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.