BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32560152)

  • 1. Subcritical Water Extraction of Chestnut Bark and Optimization of Process Parameters.
    Gagić T; Knez Ž; Škerget M
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32560152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD-MS.
    Comandini P; Lerma-García MJ; Simó-Alfonso EF; Toschi TG
    Food Chem; 2014 Aug; 157():290-5. PubMed ID: 24679783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology.
    Pinto D; Vieira EF; Peixoto AF; Freire C; Freitas V; Costa P; Delerue-Matos C; Rodrigues F
    Food Chem; 2021 Jan; 334():127521. PubMed ID: 32693333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valorization of solid wastes from chestnut industry processing: Extraction and optimization of polyphenols, tannins and ellagitannins and its potential for adhesives, cosmetic and pharmaceutical industry.
    Aires A; Carvalho R; Saavedra MJ
    Waste Manag; 2016 Feb; 48():457-464. PubMed ID: 26626811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of tannin from chestnut (Castanea vesca).
    Krisper P; Tisler V; Skubic V; Rupnik I; Kobal S
    Basic Life Sci; 1992; 59():1013-9. PubMed ID: 1417692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methodology optimization for the analysis of phenolic compounds in chestnut (
    Fuente-Maqueda F; Rodríguez A; Majada J; Fernández B; Feito I
    Food Sci Technol Int; 2020 Sep; 26(6):520-534. PubMed ID: 32223433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of Active Compounds from Food by-Product (Cocoa Shell) Using Subcritical Water Extraction.
    Jokić S; Gagić T; Knez Ž; Šubarić D; Škerget M
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29891762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenolic compounds in chestnut (Castanea sativa Mill.) heartwood. Effect of toasting at cooperage.
    Sanz M; Cadahía E; Esteruelas E; Muñoz AM; Fernández de Simón B; Hernández T; Estrella I
    J Agric Food Chem; 2010 Sep; 58(17):9631-40. PubMed ID: 20687564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of gallotannins and ellagitannins in aged wine spirits: A new perspective using alternative ageing technology and high-resolution mass spectrometry.
    Fernandes TA; Antunes AMM; Caldeira I; Anjos O; de Freitas V; Fargeton L; Boissier B; Catarino S; Canas S
    Food Chem; 2022 Jul; 382():132322. PubMed ID: 35158268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyphenol Profiling of Chestnut Pericarp, Integument and Curing Water Extracts to Qualify These Food By-Products as a Source of Antioxidants.
    Pinto G; De Pascale S; Aponte M; Scaloni A; Addeo F; Caira S
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spruce Bark-A Source of Polyphenolic Compounds: Optimizing the Operating Conditions of Supercritical Carbon Dioxide Extraction.
    Strižincová P; Ház A; Burčová Z; Feranc J; Kreps F; Šurina I; Jablonský M
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31717444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HPLC-DAD optimization of quantification of vescalagin, gallic and ellagic acid in chestnut tannins.
    Richard-Dazeur C; Jacolot P; Niquet-Léridon C; Goethals L; Barbezier N; Anton PM
    Heliyon; 2023 Aug; 9(8):e18993. PubMed ID: 37636425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valorization of Yarrow (
    Vladić J; Jakovljević M; Molnar M; Vidović S; Tomić M; Drinić Z; Jokić S
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32325741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subcritical water extraction of flavoring and phenolic compounds from cinnamon bark (Cinnamomum zeylanicum).
    Khuwijitjaru P; Sayputikasikorn N; Samuhasaneetoo S; Penroj P; Siriwongwilaichat P; Adachi S
    J Oleo Sci; 2012; 61(6):349-55. PubMed ID: 22687781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of condensed tannins and carbohydrates in hot water bark extracts of European softwood species.
    Bianchi S; Kroslakova I; Janzon R; Mayer I; Saake B; Pichelin F
    Phytochemistry; 2015 Dec; 120():53-61. PubMed ID: 26547588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and structure of whiskey polyphenols produced by oxidation of oak wood ellagitannins.
    Fujieda M; Tanaka T; Suwa Y; Koshimizu S; Kouno I
    J Agric Food Chem; 2008 Aug; 56(16):7305-10. PubMed ID: 18672883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressurized Solvent Extraction of
    Rodríguez-Seoane P; Díaz-Reinoso B; Domínguez H
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011485
    [No Abstract]   [Full Text] [Related]  

  • 18. Hydrolyzable Tannins from Sweet Chestnut Fractions Obtained by a Sustainable and Eco-friendly Industrial Process.
    Campo M; Pinelli P; Romani A
    Nat Prod Commun; 2016 Mar; 11(3):409-15. PubMed ID: 27169194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The high-performance liquid chromatography/multistage electrospray mass spectrometric investigation and extraction optimization of beech (Fagus sylvatica L.) bark polyphenols.
    Hofmann T; Nebehaj E; Albert L
    J Chromatogr A; 2015 May; 1393():96-105. PubMed ID: 25840663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of microwave-assisted extraction conditions for preparing lignan-rich extract from Saraca asoca bark using Box-Behnken design.
    Mishra S; Aeri V
    Pharm Biol; 2016 Jul; 54(7):1255-62. PubMed ID: 26428389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.