BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32560269)

  • 1. A Dynamic Hanging-Drop System for Mesenchymal Stem Cell Culture.
    Huang SW; Tzeng SC; Chen JK; Sun JS; Lin FH
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32560269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple elastic membrane-based microfluidic chip for the proliferation and differentiation of mesenchymal stem cells under tensile stress.
    Gao X; Zhang X; Tong H; Lin B; Qin J
    Electrophoresis; 2011 Nov; 32(23):3431-6. PubMed ID: 22072525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-tension driven open microfluidic platform for hanging droplet culture.
    de Groot TE; Veserat KS; Berthier E; Beebe DJ; Theberge AB
    Lab Chip; 2016 Jan; 16(2):334-44. PubMed ID: 26660268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates.
    Hsiao AY; Tung YC; Kuo CH; Mosadegh B; Bedenis R; Pienta KJ; Takayama S
    Biomed Microdevices; 2012 Apr; 14(2):313-23. PubMed ID: 22057945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multicellular spheroid formation and extraction chip using removable cell trapping barriers.
    Jin HJ; Cho YH; Gu JM; Kim J; Oh YS
    Lab Chip; 2011 Jan; 11(1):115-9. PubMed ID: 21038070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A superhydrophobic chip integrated with an array of medium reservoirs for long-term hanging drop spheroid culture.
    Sun B; Zhao Y; Wu W; Zhao Q; Li G
    Acta Biomater; 2021 Nov; 135():234-242. PubMed ID: 34389482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The culture and differentiation of amniotic stem cells using a microfluidic system.
    Wu HW; Lin XZ; Hwang SM; Lee GB
    Biomed Microdevices; 2009 Aug; 11(4):869-81. PubMed ID: 19370418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal periodic perfusion strategy for robust long-term microfluidic cell culture.
    Giulitti S; Magrofuoco E; Prevedello L; Elvassore N
    Lab Chip; 2013 Nov; 13(22):4430-41. PubMed ID: 24064704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Culture of hybrid spheroids composed of calcium phosphate materials and mesenchymal stem cells on an oxygen-permeable culture device to predict in vivo bone forming capability.
    Sato T; Anada T; Hamai R; Shiwaku Y; Tsuchiya K; Sakai S; Baba K; Sasaki K; Suzuki O
    Acta Biomater; 2019 Apr; 88():477-490. PubMed ID: 30844570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells.
    Ryu NE; Lee SH; Park H
    Cells; 2019 Dec; 8(12):. PubMed ID: 31842346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel microfluidic platform with stable concentration gradient for on chip cell culture and screening assays.
    Xu BY; Hu SW; Qian GS; Xu JJ; Chen HY
    Lab Chip; 2013 Sep; 13(18):3714-20. PubMed ID: 23884407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Culture Conditions on Cell Proliferation in a Microfluidic Channel.
    Sato K; Sato M; Yokoyama M; Hirai M; Furuta A
    Anal Sci; 2019 Jan; 35(1):49-56. PubMed ID: 30473567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-size spheroid formation using microfluidic funnels.
    Marimuthu M; Rousset N; St-Georges-Robillard A; Lateef MA; Ferland M; Mes-Masson AM; Gervais T
    Lab Chip; 2018 Jan; 18(2):304-314. PubMed ID: 29211088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Hanging Drop Culture for Retinal Precursor-Like Cells Differentiation of Human Adipose-Derived Stem Cells Using Small Molecules.
    Salehi H; Razavi S; Esfandiari E; Kazemi M; Amini S; Amirpour N
    J Mol Neurosci; 2019 Dec; 69(4):597-607. PubMed ID: 31363912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and Operation of Microfluidic Hanging-Drop Networks.
    Misun PM; Birchler AK; Lang M; Hierlemann A; Frey O
    Methods Mol Biol; 2018; 1771():183-202. PubMed ID: 29633214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips.
    Ju X; Li D; Gao N; Shi Q; Hou H
    Biotechnol J; 2008 Mar; 3(3):383-91. PubMed ID: 18098120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Handheld recirculation system and customized media for microfluidic cell culture.
    Futai N; Gu W; Song JW; Takayama S
    Lab Chip; 2006 Jan; 6(1):149-54. PubMed ID: 16372083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic channel-integrated hanging drop array chip operated by pushbuttons for spheroid culture and analysis.
    Park J; Kim H; Park JK
    Analyst; 2020 Oct; 145(21):6974-6980. PubMed ID: 32857069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic-Printed Microcarrier for In Vitro Expansion of Adherent Stem Cells in 3D Culture Platform.
    Park W; Jang S; Kim TW; Bae J; Oh TI; Lee E
    Macromol Biosci; 2019 Aug; 19(8):e1900136. PubMed ID: 31268233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.