These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32560432)

  • 1. Wetting/Drying Behavior of Lime and Alkaline Activation Stabilized Marine Clay Reinforced with Modified Coir Fiber.
    Kamaruddin FA; Anggraini V; Kim Huat B; Nahazanan H
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32560432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental investigation on strength development of lime stabilized loess.
    Jia L; Guo J; Zhou Z; Fu Y; Yao K
    RSC Adv; 2019 Jun; 9(34):19680-19689. PubMed ID: 35519363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paper and wood industry waste as a sustainable solution for environmental vulnerabilities of expansive soil: A novel approach.
    Ijaz N; Dai F; Rehman ZU
    J Environ Manage; 2020 May; 262():110285. PubMed ID: 32094107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GMCs stabilized/solidified Pb/Zn contaminated soil under different curing temperature: leachability and durability.
    Wang F; Zhang Y; Shen Z; Pan H; Xu J; Al-Tabbaa A
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26963-26971. PubMed ID: 31309424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Freeze-Thaw Cycles on Strength and Wave Velocity of Lime-Stabilized Basalt Fiber-Reinforced Loess.
    Wang W; Cao G; Li Y; Zhou Y; Lu T; Zheng B; Geng W
    Polymers (Basel); 2022 Apr; 14(7):. PubMed ID: 35406338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of waste paper sludge ash as a calcium-based stabiliser for clay soils.
    Mavroulidou M
    Waste Manag Res; 2018 Nov; 36(11):1066-1072. PubMed ID: 30319066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Elastic Modulus and Damage Stress-Strain Model of Polypropylene Fiber and Nano Clay Modified Lime Treated Soil under Axial Load.
    Wang Z; Zhang W; Jiang P; Li C
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Curing on Micro-Physical Performance of Polypropylene Fiber Reinforced and Silica Fume stabilized Expansive Soil Under Freezing Thawing Cycles.
    Tiwari N; Satyam N; Singh K
    Sci Rep; 2020 May; 10(1):7624. PubMed ID: 32376991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of Strength Development and Soil-Water Characteristics of Rice Husk Ash-Lime Stabilized Soft Soil.
    Jiang X; Huang Z; Ma F; Luo X
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31771232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unconfined Compressive Properties of Composite Sand Stabilized with Organic Polymers and Natural Fibers.
    Bai Y; Liu J; Song Z; Chen Z; Jiang C; Lan X; Shi X; Bu F; Kanungo DP
    Polymers (Basel); 2019 Sep; 11(10):. PubMed ID: 31569683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Durability against Wetting-Drying Cycles of Sustainable Biopolymer-Treated Soil.
    Soldo A; Miletic M
    Polymers (Basel); 2022 Oct; 14(19):. PubMed ID: 36236194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Compressive Strength Tests of Corroded SFRC Exposed to Drying-Wetting Cycles with a 37 mm Diameter SHPB.
    Chen H; Zhou X; Li Q; He R; Huang X
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strength of Coarse-Grained Soil Stabilized by Poly (Vinyl Alcohol) Solution and Silica Fume under Wet-Dry Cycles.
    Zhao Z; Li W; Shi H; Li Z; Li J; Zhao C; Wang P
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compressive Strength of Acrylic Polymer-Stabilized Kaolinite Clay Modified with Different Additives.
    Ghasemzadeh H; Mehrpajouh A; Pishvaei M
    ACS Omega; 2022 Jun; 7(23):19204-19215. PubMed ID: 35721929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drying-wetting cycles consistently increase net nitrogen mineralization in 25 agricultural soils across intensity and number of drying-wetting cycles.
    Lu T; Wang Y; Zhu H; Wei X; Shao M
    Sci Total Environ; 2020 Mar; 710():135574. PubMed ID: 31787285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Durability, Strength, and Erosion Resistance Assessment of Lignin Biopolymer Treated Soil.
    Bagheri P; Gratchev I; Son S; Rybachuk M
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Changes to Triaxial Shear Strength Parameters and Microstructure of Yili Loess with Drying-Wetting Cycles.
    Hao R; Zhang Z; Guo Z; Huang X; Lv Q; Wang J; Liu T
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effects of Particle Size Distribution and Moisture Variation on Mechanical Strength of Biopolymer-Treated Soil.
    Fatehi H; Ong DEL; Yu J; Chang I
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Properties of Mortars Reinforced with Amazon Rainforest Natural Fibers.
    da Fonseca RP; Rocha JC; Cheriaf M
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33396353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of water repellent chemical additive and different curing regimes on dimensional stability and strength of earth bricks from termite mound-clay.
    Akinyemi BA; Bamidele A; Oluwanifemi A
    Heliyon; 2019 Jan; 5(1):e01182. PubMed ID: 30775576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.