These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 32560798)

  • 1. Monitoring neuronal activity with voltage-sensitive fluorophores.
    Kirk MJ; Raliski BK; Miller EW
    Methods Enzymol; 2020; 640():185-204. PubMed ID: 32560798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiology, Unplugged: Imaging Membrane Potential with Fluorescent Indicators.
    Liu P; Miller EW
    Acc Chem Res; 2020 Jan; 53(1):11-19. PubMed ID: 31834772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spying on Neuronal Membrane Potential with Genetically Targetable Voltage Indicators.
    Grenier V; Daws BR; Liu P; Miller EW
    J Am Chem Soc; 2019 Jan; 141(3):1349-1358. PubMed ID: 30628785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Spike Detection and Connectivity Analysis With a Far-Red Voltage-Sensitive Fluorophore Reveals Changes to Network Connectivity in Development and Disease.
    Walker AS; Raliski BK; Karbasi K; Zhang P; Sanders K; Miller EW
    Front Neurosci; 2021; 15():643859. PubMed ID: 34054405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorogenic Targeting of Voltage-Sensitive Dyes to Neurons.
    Liu P; Grenier V; Hong W; Muller VR; Miller EW
    J Am Chem Soc; 2017 Dec; 139(48):17334-17340. PubMed ID: 29154543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Photostable Silicon Rhodamine Platform for Optical Voltage Sensing.
    Huang YL; Walker AS; Miller EW
    J Am Chem Soc; 2015 Aug; 137(33):10767-76. PubMed ID: 26237573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imaging Spontaneous Neuronal Activity with Voltage-Sensitive Dyes.
    Raliski BK; Kirk MJ; Miller EW
    Curr Protoc; 2021 Mar; 1(3):e48. PubMed ID: 33760396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optically monitoring voltage in neurons by photo-induced electron transfer through molecular wires.
    Miller EW; Lin JY; Frady EP; Steinbach PA; Kristan WB; Tsien RY
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):2114-9. PubMed ID: 22308458
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Kulkarni RU; Vandenberghe M; Thunemann M; James F; Andreassen OA; Djurovic S; Devor A; Miller EW
    ACS Cent Sci; 2018 Oct; 4(10):1371-1378. PubMed ID: 30410975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Rationally Designed, General Strategy for Membrane Orientation of Photoinduced Electron Transfer-Based Voltage-Sensitive Dyes.
    Kulkarni RU; Yin H; Pourmandi N; James F; Adil MM; Schaffer DV; Wang Y; Miller EW
    ACS Chem Biol; 2017 Feb; 12(2):407-413. PubMed ID: 28004909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small molecule fluorescent voltage indicators for studying membrane potential.
    Miller EW
    Curr Opin Chem Biol; 2016 Aug; 33():74-80. PubMed ID: 27318561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalently Tethered Rhodamine Voltage Reporters for High Speed Functional Imaging in Brain Tissue.
    Deal PE; Liu P; Al-Abdullatif SH; Muller VR; Shamardani K; Adesnik H; Miller EW
    J Am Chem Soc; 2020 Jan; 142(1):614-622. PubMed ID: 31829585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A silicon-rhodamine chemical-genetic hybrid for far red voltage imaging from defined neurons in brain slice.
    Ortiz G; Liu P; Deal PE; Nensel AK; Martinez KN; Shamardani K; Adesnik H; Miller EW
    RSC Chem Biol; 2021 Dec; 2(6):1594-1599. PubMed ID: 34977574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Second-harmonic generation voltage imaging at subcellular resolution in rat hippocampal slices.
    Rama S; Vetrivel L; Semyanov A
    J Biophotonics; 2010 Dec; 3(12):784-90. PubMed ID: 20815024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical imaging of neuronal activity in tissue labeled by retrograde transport of Calcium Green Dextran.
    McPherson DR; McClellan AD; O'Donovan MJ
    Brain Res Brain Res Protoc; 1997 May; 1(2):157-64. PubMed ID: 9385080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique properties of cardiac action potentials recorded with voltage-sensitive dyes.
    Girouard SD; Laurita KR; Rosenbaum DS
    J Cardiovasc Electrophysiol; 1996 Nov; 7(11):1024-38. PubMed ID: 8930734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast optical measurement of membrane potential changes at multiple sites on an individual nerve cell.
    Zecević D; Antić S
    Histochem J; 1998 Mar; 30(3):197-216. PubMed ID: 10188927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor.
    Fink AE; Bender KJ; Trussell LO; Otis TS; DiGregorio DA
    PLoS One; 2012; 7(8):e41434. PubMed ID: 22870221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. VoltageFluor dyes and fluorescence lifetime imaging for optical measurement of membrane potential.
    Gest AMM; Yaeger-Weiss SK; Lazzari-Dean JR; Miller EW
    Methods Enzymol; 2021; 653():267-293. PubMed ID: 34099175
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.