These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32560800)

  • 21. Exchangeable Self-Assembled Lanthanide Antennas for PLIM Microscopy.
    Ruiz-Arias A; Fueyo-González F; Izquierdo-García C; Navarro A; Gutiérrez-Rodríguez M; Herranz R; Burgio C; Reinoso A; Cuerva JM; Orte A; González-Vera JA
    Angew Chem Int Ed Engl; 2024 Feb; 63(6):e202314595. PubMed ID: 37991081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temporally and spectrally resolved imaging microscopy of lanthanide chelates.
    Vereb G; Jares-Erijman E; Selvin PR; Jovin TM
    Biophys J; 1998 May; 74(5):2210-22. PubMed ID: 9591648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduced background autofluorescence for cell imaging using nanodiamonds and lanthanide chelates.
    Cordina NM; Sayyadi N; Parker LM; Everest-Dass A; Brown LJ; Packer NH
    Sci Rep; 2018 Mar; 8(1):4521. PubMed ID: 29540838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lanthanide complexes for magnetic resonance and optical molecular imaging.
    Laurent S; Vander Elst L; Muller RN
    Q J Nucl Med Mol Imaging; 2009 Dec; 53(6):586-603. PubMed ID: 20016451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating spectral overlap with the degree of quenching in UCP luminescence energy transfer systems.
    Burgess L; Wilson H; Jones AR; Hay S; Natrajan LS
    Methods Appl Fluoresc; 2020 Jul; 8(4):. PubMed ID: 32698171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lanthanide-containing polycations for monitoring polyplex dynamics via lanthanide resonance energy transfer.
    Kelkar SS; Xue L; Turner SR; Reineke TM
    Biomacromolecules; 2014 May; 15(5):1612-24. PubMed ID: 24611467
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-resolved detection of lanthanide luminescence for ultrasensitive bioanalytical assays.
    Dickson EF; Pollak A; Diamandis EP
    J Photochem Photobiol B; 1995 Jan; 27(1):3-19. PubMed ID: 7699520
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Progress in lanthanides as luminescent probes.
    Hemmilä I; Laitala V
    J Fluoresc; 2005 Jul; 15(4):529-42. PubMed ID: 16167211
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectrally resolved confocal microscopy using lanthanide centred near-IR emission.
    Liao Z; Tropiano M; Mantulnikovs K; Faulkner S; Vosch T; Sørensen TJ
    Chem Commun (Camb); 2015 Feb; 51(12):2372-5. PubMed ID: 25563394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increasing lanthanide luminescence by use of the RETEL effect.
    Leif RC; Vallarino LM; Becker MC; Yang S
    Cytometry A; 2006 Aug; 69(8):940-6. PubMed ID: 16969811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activated phosphonated trifunctional chelates for highly sensitive lanthanide-based FRET immunoassays applied to total prostate specific antigen detection.
    Nchimi-Nono K; Wegner KD; Lindén S; Lecointre A; Ehret-Sabatier L; Shakir S; Hildebrandt N; Charbonnière LJ
    Org Biomol Chem; 2013 Oct; 11(38):6493-501. PubMed ID: 23851931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calibration beads containing luminescent lanthanide ion complexes.
    Leif RC; Yang S; Jin D; Piper J; Vallarino LM; Williams JW; Zucker RM
    J Biomed Opt; 2009; 14(2):024022. PubMed ID: 19405752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improving lanthanide-based resonance energy transfer detection by increasing donor-acceptor distances.
    Vogel KW; Vedvik KL
    J Biomol Screen; 2006 Jun; 11(4):439-43. PubMed ID: 16751339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Frequency-domain measurement of luminescent lanthanide chelates.
    Hyppänen I; Soukka T; Kankare J
    J Phys Chem A; 2010 Aug; 114(30):7856-67. PubMed ID: 20617797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Upconverting phosphors in a dual-parameter LRET-based hybridization assay.
    Rantanen T; Järvenpää ML; Vuojola J; Arppe R; Kuningas K; Soukka T
    Analyst; 2009 Aug; 134(8):1713-6. PubMed ID: 20448942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new quinoline sensitizer-centered lanthanide chelate and its use for protein labling on Ni-NTA beads for TR LRET assays.
    Kim SH; Ge P; Katzenellenbogen JA
    Chem Commun (Camb); 2009 Jan; (2):183-5. PubMed ID: 19099062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Homogeneous detection of avidin based on switchable lanthanide luminescence.
    Karhunen U; Rosenberg J; Lamminmäki U; Soukka T
    Anal Chem; 2011 Dec; 83(23):9011-6. PubMed ID: 22070371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using lanthanide-based resonance energy transfer for in vitro and in vivo studies of biological processes.
    Zherdeva VV; Savitsky AP
    Biochemistry (Mosc); 2012 Dec; 77(13):1553-74. PubMed ID: 23379528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Visualizing neuroinflammation with fluorescence and luminescent lanthanide-based in situ hybridization.
    Parker LM; Sayyadi N; Staikopoulos V; Shrestha A; Hutchinson MR; Packer NH
    J Neuroinflammation; 2019 Mar; 16(1):65. PubMed ID: 30898121
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lanthanide oleates: chelation, self-assembly, and exemplification of ordered nanostructured colloidal contrast agents for medical imaging.
    Liu G; Conn CE; Drummond CJ
    J Phys Chem B; 2009 Dec; 113(49):15949-59. PubMed ID: 19904961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.