These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32561255)

  • 1. Pathological effects of nano-sized particles on the respiratory system.
    Nho R
    Nanomedicine; 2020 Oct; 29():102242. PubMed ID: 32561255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Nanoparticle: a nightmare for the future].
    Berk S; Akkurt I
    Tuberk Toraks; 2012; 60(2):180-4. PubMed ID: 22779942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diesel exhaust particulate (DEP) and nanoparticle exposures: what do DEP human clinical studies tell us about potential human health hazards of nanoparticles?
    Hesterberg TW; Long CM; Lapin CA; Hamade AK; Valberg PA
    Inhal Toxicol; 2010 Jul; 22(8):679-94. PubMed ID: 20462394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles: a review of particle toxicology following inhalation exposure.
    Bakand S; Hayes A; Dechsakulthorn F
    Inhal Toxicol; 2012; 24(2):125-35. PubMed ID: 22260506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review of the effects of manufactured nanoparticles on mammalian target organs.
    Wu T; Tang M
    J Appl Toxicol; 2018 Jan; 38(1):25-40. PubMed ID: 28799656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure.
    Gosens I; Cassee FR; Zanella M; Manodori L; Brunelli A; Costa AL; Bokkers BG; de Jong WH; Brown D; Hristozov D; Stone V
    Nanotoxicology; 2016 Oct; 10(8):1084-95. PubMed ID: 27132941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size-dependent study of pulmonary responses to nano-sized iron and copper oxide nanoparticles.
    Kumar R; Nagesha DK
    Methods Mol Biol; 2013; 1028():247-64. PubMed ID: 23740125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanomaterials and nanoparticles: sources and toxicity.
    Buzea C; Pacheco II; Robbie K
    Biointerphases; 2007 Dec; 2(4):MR17-71. PubMed ID: 20419892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory effects of manufactured nanoparticles.
    Andujar P; Lanone S; Brochard P; Boczkowski J
    Rev Mal Respir; 2011 Oct; 28(8):e66-75. PubMed ID: 22099416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined experimental and numerical study on upper airway dosimetry of inhaled nanoparticles from an electrical discharge machine shop.
    Tian L; Shang Y; Chen R; Bai R; Chen C; Inthavong K; Tu J
    Part Fibre Toxicol; 2017 Jul; 14(1):24. PubMed ID: 28701167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunotoxicological impact of occupational and environmental nanoparticles exposure: The influence of physical, chemical, and combined characteristics of the particles.
    Pedata P; Petrarca C; Garzillo EM; Di Gioacchino M
    Int J Immunopathol Pharmacol; 2016 Sep; 29(3):343-53. PubMed ID: 26684639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulmonary applications and toxicity of engineered nanoparticles.
    Card JW; Zeldin DC; Bonner JC; Nestmann ER
    Am J Physiol Lung Cell Mol Physiol; 2008 Sep; 295(3):L400-11. PubMed ID: 18641236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions.
    Stone V; Johnston H; Clift MJ
    IEEE Trans Nanobioscience; 2007 Dec; 6(4):331-40. PubMed ID: 18217626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle-induced pulmonary toxicity.
    Li JJ; Muralikrishnan S; Ng CT; Yung LY; Bay BH
    Exp Biol Med (Maywood); 2010 Sep; 235(9):1025-33. PubMed ID: 20719818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The developing respiratory tract and its specific needs in regard to ultrafine particulate matter exposure.
    Schüepp K; Sly PD
    Paediatr Respir Rev; 2012 Jun; 13(2):95-9. PubMed ID: 22475255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management.
    Warheit DB; Reed KL; Sayes CM
    Inhal Toxicol; 2009 Jul; 21 Suppl 1():61-7. PubMed ID: 19558235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats.
    Zhu MT; Feng WY; Wang B; Wang TC; Gu YQ; Wang M; Wang Y; Ouyang H; Zhao YL; Chai ZF
    Toxicology; 2008 May; 247(2-3):102-11. PubMed ID: 18394769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Penetration of nanoparticles into human skin.
    Liang XW; Xu ZP; Grice J; Zvyagin AV; Roberts MS; Liu X
    Curr Pharm Des; 2013; 19(35):6353-66. PubMed ID: 23469998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
    Sayes CM; Reed KL; Warheit DB
    Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks.
    Lam CW; James JT; McCluskey R; Arepalli S; Hunter RL
    Crit Rev Toxicol; 2006 Mar; 36(3):189-217. PubMed ID: 16686422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.