These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3325 related articles for article (PubMed ID: 32561274)
1. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Kumar Y; Singh H; Patel CN J Infect Public Health; 2020 Sep; 13(9):1210-1223. PubMed ID: 32561274 [TBL] [Abstract][Full Text] [Related]
3. In silico drug discovery of major metabolites from spices as SARS-CoV-2 main protease inhibitors. Ibrahim MAA; Abdelrahman AHM; Hussien TA; Badr EAA; Mohamed TA; El-Seedi HR; Pare PW; Efferth T; Hegazy MF Comput Biol Med; 2020 Nov; 126():104046. PubMed ID: 33065388 [TBL] [Abstract][Full Text] [Related]
4. Drug Repurposing for Candidate SARS-CoV-2 Main Protease Inhibitors by a Novel Sencanski M; Perovic V; Pajovic SB; Adzic M; Paessler S; Glisic S Molecules; 2020 Aug; 25(17):. PubMed ID: 32842509 [TBL] [Abstract][Full Text] [Related]
5. In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus. Eleftheriou P; Amanatidou D; Petrou A; Geronikaki A Molecules; 2020 May; 25(11):. PubMed ID: 32485894 [TBL] [Abstract][Full Text] [Related]
6. Targeting the SARS-CoV-2 main protease using FDA-approved Isavuconazonium, a P2-P3 α-ketoamide derivative and Pentagastrin: An in-silico drug discovery approach. Achilonu I; Iwuchukwu EA; Achilonu OJ; Fernandes MA; Sayed Y J Mol Graph Model; 2020 Dec; 101():107730. PubMed ID: 32920239 [TBL] [Abstract][Full Text] [Related]
7. In Silico Insights into the SARS CoV-2 Main Protease Suggest NADH Endogenous Defences in the Control of the Pandemic Coronavirus Infection. Martorana A; Gentile C; Lauria A Viruses; 2020 Jul; 12(8):. PubMed ID: 32722574 [TBL] [Abstract][Full Text] [Related]
8. Identification of saquinavir as a potent inhibitor of dimeric SARS-CoV2 main protease through MM/GBSA. Bello M; Martínez-Muñoz A; Balbuena-Rebolledo I J Mol Model; 2020 Nov; 26(12):340. PubMed ID: 33184722 [TBL] [Abstract][Full Text] [Related]
9. In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. Choudhary MI; Shaikh M; Tul-Wahab A; Ur-Rahman A PLoS One; 2020; 15(7):e0235030. PubMed ID: 32706783 [TBL] [Abstract][Full Text] [Related]
10. Fast Identification of Possible Drug Treatment of Coronavirus Disease-19 (COVID-19) through Computational Drug Repurposing Study. Wang J J Chem Inf Model; 2020 Jun; 60(6):3277-3286. PubMed ID: 32315171 [TBL] [Abstract][Full Text] [Related]
11. Identification of high-affinity inhibitors of SARS-CoV-2 main protease: Towards the development of effective COVID-19 therapy. Mohammad T; Shamsi A; Anwar S; Umair M; Hussain A; Rehman MT; AlAjmi MF; Islam A; Hassan MI Virus Res; 2020 Oct; 288():198102. PubMed ID: 32717346 [TBL] [Abstract][Full Text] [Related]
12. Repurposing approved drugs as potential inhibitors of 3CL-protease of SARS-CoV-2: Virtual screening and structure based drug design. Meyer-Almes FJ Comput Biol Chem; 2020 Oct; 88():107351. PubMed ID: 32769050 [TBL] [Abstract][Full Text] [Related]
13. Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors. Jiménez-Alberto A; Ribas-Aparicio RM; Aparicio-Ozores G; Castelán-Vega JA Comput Biol Chem; 2020 Oct; 88():107325. PubMed ID: 32623357 [TBL] [Abstract][Full Text] [Related]
14. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 M Gurung AB; Ali MA; Lee J; Farah MA; Al-Anazi KM Life Sci; 2020 Aug; 255():117831. PubMed ID: 32450166 [TBL] [Abstract][Full Text] [Related]
15. Why Are Lopinavir and Ritonavir Effective against the Newly Emerged Coronavirus 2019? Atomistic Insights into the Inhibitory Mechanisms. Nutho B; Mahalapbutr P; Hengphasatporn K; Pattaranggoon NC; Simanon N; Shigeta Y; Hannongbua S; Rungrotmongkol T Biochemistry; 2020 May; 59(18):1769-1779. PubMed ID: 32293875 [TBL] [Abstract][Full Text] [Related]
16. Anti-HCV and anti-malaria agent, potential candidates to repurpose for coronavirus infection: Virtual screening, molecular docking, and molecular dynamics simulation study. Hosseini FS; Amanlou M Life Sci; 2020 Oct; 258():118205. PubMed ID: 32777300 [TBL] [Abstract][Full Text] [Related]
17. Reckoning a fungal metabolite, Pyranonigrin A as a potential Main protease (M Rao P; Shukla A; Parmar P; Rawal RM; Patel B; Saraf M; Goswami D Biophys Chem; 2020 Sep; 264():106425. PubMed ID: 32663708 [TBL] [Abstract][Full Text] [Related]
18. Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2. Tripathi PK; Upadhyay S; Singh M; Raghavendhar S; Bhardwaj M; Sharma P; Patel AK Int J Biol Macromol; 2020 Dec; 164():2622-2631. PubMed ID: 32853604 [TBL] [Abstract][Full Text] [Related]
19. Discovery of potent inhibitors for SARS-CoV-2's main protease by ligand-based/structure-based virtual screening, MD simulations, and binding energy calculations. Abu-Saleh AAA; Awad IE; Yadav A; Poirier RA Phys Chem Chem Phys; 2020 Oct; 22(40):23099-23106. PubMed ID: 33025993 [TBL] [Abstract][Full Text] [Related]
20. Clean Grinding Technique: A Facile Synthesis and In Silico Antiviral Activity of Hydrazones, Pyrazoles, and Pyrazines Bearing Thiazole Moiety against SARS-CoV-2 Main Protease (M Abu-Melha S; Edrees MM; Riyadh SM; Abdelaziz MR; Elfiky AA; Gomha SM Molecules; 2020 Oct; 25(19):. PubMed ID: 33036293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]