BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 32561297)

  • 21. Dynamic Characterization of Structural, Molecular, and Electrophysiological Phenotypes of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids, and Comparison with Fetal and Adult Gene Profiles.
    Logan S; Arzua T; Yan Y; Jiang C; Liu X; Yu LK; Liu QS; Bai X
    Cells; 2020 May; 9(5):. PubMed ID: 32456176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disease Modeling in Stem Cell-Derived 3D Organoid Systems.
    Dutta D; Heo I; Clevers H
    Trends Mol Med; 2017 May; 23(5):393-410. PubMed ID: 28341301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brain organoids: advances, applications and challenges.
    Qian X; Song H; Ming GL
    Development; 2019 Apr; 146(8):. PubMed ID: 30992274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Use of Stem Cell-Derived Organoids in Disease Modeling: An Update.
    Azar J; Bahmad HF; Daher D; Moubarak MM; Hadadeh O; Monzer A; Al Bitar S; Jamal M; Al-Sayegh M; Abou-Kheir W
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioengineering tissue morphogenesis and function in human neural organoids.
    Fedorchak NJ; Iyer N; Ashton RS
    Semin Cell Dev Biol; 2021 Mar; 111():52-59. PubMed ID: 32540123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cerebral Organoids-Challenges to Establish a Brain Prototype.
    Eremeev AV; Lebedeva OS; Bogomiakova ME; Lagarkova MA; Bogomazova AN
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359959
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New frontiers in modeling tuberous sclerosis with human stem cell-derived neurons and brain organoids.
    Blair JD; Bateup HS
    Dev Dyn; 2020 Jan; 249(1):46-55. PubMed ID: 31070828
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brain organoid: a 3D technology for investigating cellular composition and interactions in human neurological development and disease models in vitro.
    Agboola OS; Hu X; Shan Z; Wu Y; Lei L
    Stem Cell Res Ther; 2021 Jul; 12(1):430. PubMed ID: 34332630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Central nervous system organoids for modeling neurodegenerative diseases.
    Hou PS; Kuo HC
    IUBMB Life; 2022 Aug; 74(8):812-825. PubMed ID: 35102668
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human 3D brain organoids: steering the demolecularization of brain and neurological diseases.
    Adlakha YK
    Cell Death Discov; 2023 Jul; 9(1):221. PubMed ID: 37400464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease.
    Li R; Sun L; Fang A; Li P; Wu Q; Wang X
    Protein Cell; 2017 Nov; 8(11):823-833. PubMed ID: 29058117
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro modeling for inherited neurological diseases using induced pluripotent stem cells: from 2D to organoid.
    Nam KH; Yi SA; Jang HJ; Han JW; Lee J
    Arch Pharm Res; 2020 Sep; 43(9):877-889. PubMed ID: 32761309
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brain organoids: A revolutionary tool for modeling neurological disorders and development of therapeutics.
    Acharya P; Choi NY; Shrestha S; Jeong S; Lee MY
    Biotechnol Bioeng; 2024 Feb; 121(2):489-506. PubMed ID: 38013504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain organoids as a model system for human neurodevelopment and disease.
    Setia H; Muotri AR
    Semin Cell Dev Biol; 2019 Nov; 95():93-97. PubMed ID: 30904636
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A critical look: Challenges in differentiating human pluripotent stem cells into desired cell types and organoids.
    Fowler JL; Ang LT; Loh KM
    Wiley Interdiscip Rev Dev Biol; 2020 May; 9(3):e368. PubMed ID: 31746148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fusion of Regionally Specified hPSC-Derived Organoids Models Human Brain Development and Interneuron Migration.
    Xiang Y; Tanaka Y; Patterson B; Kang YJ; Govindaiah G; Roselaar N; Cakir B; Kim KY; Lombroso AP; Hwang SM; Zhong M; Stanley EG; Elefanty AG; Naegele JR; Lee SH; Weissman SM; Park IH
    Cell Stem Cell; 2017 Sep; 21(3):383-398.e7. PubMed ID: 28757360
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organoid technologies meet genome engineering.
    Nie J; Hashino E
    EMBO Rep; 2017 Mar; 18(3):367-376. PubMed ID: 28202491
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Comprehensive Update of Cerebral Organoids between Applications and Challenges.
    Li X; Shopit A; Wang J
    Oxid Med Cell Longev; 2022; 2022():7264649. PubMed ID: 36518994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tackling mitochondrial diversity in brain function: from animal models to human brain organoids.
    Menacho C; Prigione A
    Int J Biochem Cell Biol; 2020 Jun; 123():105760. PubMed ID: 32339638
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A hollow fiber system for simple generation of human brain organoids.
    Zhu Y; Wang L; Yin F; Yu Y; Wang Y; Liu H; Wang H; Sun N; Liu H; Qin J
    Integr Biol (Camb); 2017 Sep; 9(9):774-781. PubMed ID: 28795726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.